These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 22075634)
1. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products. Gao TG; Jiang F; Yang JS; Li BZ; Yuan HL Appl Microbiol Biotechnol; 2012 Mar; 93(6):2581-90. PubMed ID: 22075634 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of humic substances-degrading bacteria from the subarctic Alaska grasslands. Park HJ; Kim D J Basic Microbiol; 2015 Jan; 55(1):54-61. PubMed ID: 23788029 [TBL] [Abstract][Full Text] [Related]
3. Degradation/solubilization of Chinese lignite by Penicillium sp. P6. Yuan HL; Yang JS; Wang FQ; Chen WX Prikl Biokhim Mikrobiol; 2006; 42(1):59-62. PubMed ID: 16521578 [TBL] [Abstract][Full Text] [Related]
4. Characterization of sucrose-glutamic acid Maillard products (SGMPs) degrading bacteria and their metabolites. Chandra R; Bharagava RN; Rai V; Singh SK Bioresour Technol; 2009 Dec; 100(24):6665-8. PubMed ID: 19665891 [TBL] [Abstract][Full Text] [Related]
5. Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray. Pathak A; Shanker R; Garg SK; Manickam N Appl Microbiol Biotechnol; 2011 Jun; 90(5):1739-54. PubMed ID: 21503758 [TBL] [Abstract][Full Text] [Related]
6. Production of humic substances through coal-solubilizing bacteria. Valero N; Gómez L; Pantoja M; Ramírez R Braz J Microbiol; 2014; 45(3):911-8. PubMed ID: 25477925 [TBL] [Abstract][Full Text] [Related]
7. Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Hussain S; Sørensen SR; Devers-Lamrani M; El-Sebai T; Martin-Laurent F Chemosphere; 2009 Nov; 77(8):1052-9. PubMed ID: 19836052 [TBL] [Abstract][Full Text] [Related]
8. Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments. Futamata H; Harayama S; Hiraishi A; Watanabe K Appl Microbiol Biotechnol; 2003 Jan; 60(5):594-600. PubMed ID: 12536262 [TBL] [Abstract][Full Text] [Related]
9. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals. Chien SW; Wang MC; Huang CC; Seshaiah K J Agric Food Chem; 2007 Jun; 55(12):4820-7. PubMed ID: 17497878 [TBL] [Abstract][Full Text] [Related]
10. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Chang YC; Choi D; Takamizawa K; Kikuchi S Bioresour Technol; 2014; 152():429-36. PubMed ID: 24316485 [TBL] [Abstract][Full Text] [Related]
11. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Mahmood S; Paton GI; Prosser JI Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858 [TBL] [Abstract][Full Text] [Related]
12. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Yang YS; Zhou JT; Lu H; Yuan YL; Zhao LH Biodegradation; 2011 Sep; 22(5):1017-27. PubMed ID: 21350882 [TBL] [Abstract][Full Text] [Related]
14. Application of a novel bacterial consortium for mineralization of sulphonated aromatic amines. Barsing P; Tiwari A; Joshi T; Garg S Bioresour Technol; 2011 Jan; 102(2):765-71. PubMed ID: 20863689 [TBL] [Abstract][Full Text] [Related]
15. Atrazine biodegradation modulated by clays and clay/humic acid complexes. Besse-Hoggan P; Alekseeva T; Sancelme M; Delort AM; Forano C Environ Pollut; 2009 Oct; 157(10):2837-44. PubMed ID: 19419808 [TBL] [Abstract][Full Text] [Related]
16. The microbial degradation of azimsulfuron and its effect on the soil bacterial community. Valle A; Boschin G; Negri M; Abbruscato P; Sorlini C; D'Agostina A; Zanardini E J Appl Microbiol; 2006 Aug; 101(2):443-52. PubMed ID: 16882153 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Bharagava RN; Chandra R Biodegradation; 2010 Sep; 21(5):703-11. PubMed ID: 20146090 [TBL] [Abstract][Full Text] [Related]
18. The contribution of alkali soluble (humic acid-like) and unhydrolyzed-alkali soluble (core-humic acid-like) fractions extracted from maize plant to the formation of soil humic acid. Adani F; Ricca G Chemosphere; 2004 Jul; 56(1):13-22. PubMed ID: 15109875 [TBL] [Abstract][Full Text] [Related]
19. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Langenheder S; Prosser JI Environ Microbiol; 2008 Sep; 10(9):2245-56. PubMed ID: 18479445 [TBL] [Abstract][Full Text] [Related]
20. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. Satlewal A; Soni R; Zaidi M; Shouche Y; Goel R J Microbiol Biotechnol; 2008 Mar; 18(3):477-82. PubMed ID: 18388465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]