These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 22075765)

  • 1. Monte Carlo simulation of surface segregation phenomena in extended and nanoparticle surfaces of Pt-Pd alloys.
    Duan Z; Wang G
    J Phys Condens Matter; 2011 Nov; 23(47):475301. PubMed ID: 22075765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of segregation in Pt-Re catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2004 Sep; 121(11):5410-22. PubMed ID: 15352835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Phys Chem B; 2005 Jun; 109(23):11683-92. PubMed ID: 16852434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal.
    Duan Z; Zhong J; Wang G
    J Chem Phys; 2010 Sep; 133(11):114701. PubMed ID: 20866148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys.
    Chen W; Dalach P; Schneider WF; Wolverton C
    Langmuir; 2012 Mar; 28(10):4683-93. PubMed ID: 22352380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzene adsorption on binary Pt3M alloys and surface alloys: a DFT study.
    Sabbe MK; LaĆ­n L; Reyniers MF; Marin GB
    Phys Chem Chem Phys; 2013 Aug; 15(29):12197-214. PubMed ID: 23811813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces.
    Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM
    J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregation and stability in surface alloys: Pd(x)Ru(1-x)/Ru(0001) and Pt(x)Ru(1-x)/Ru(0001).
    Bergbreiter A; Hoster HE; Behm RJ
    Chemphyschem; 2011 Apr; 12(6):1148-54. PubMed ID: 21462288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation of Pt(28)Rh(27) bimetallic nanoparticles: a first-principles study.
    Yuge K
    J Phys Condens Matter; 2010 Jun; 22(24):245401. PubMed ID: 21393781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys.
    De Clercq A; Giorgio S; Mottet C
    J Phys Condens Matter; 2016 Feb; 28(6):064006. PubMed ID: 26795206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions.
    Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA
    J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.
    Cheng D; Yuan S; Ferrando R
    J Phys Condens Matter; 2013 Sep; 25(35):355008. PubMed ID: 23913101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
    Luo L; Zhang L; Henkelman G; Crooks RM
    J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO Chemisorption on Pt(111), Rh/Pt(111), and Pd/Pt(111).
    Tang H; Trout BL
    J Phys Chem B; 2005 Sep; 109(37):17630-4. PubMed ID: 16853256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction.
    Tripkovic V; Hansen HA; Rossmeisl J; Vegge T
    Phys Chem Chem Phys; 2015 May; 17(17):11647-57. PubMed ID: 25865333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling bulk and surface Pt using the "Gaussian and plane wave" density functional theory formalism: validation and comparison to k-point plane wave calculations.
    Santarossa G; Vargas A; Iannuzzi M; Pignedoli CA; Passerone D; Baiker A
    J Chem Phys; 2008 Dec; 129(23):234703. PubMed ID: 19102548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.