These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 22075843)
21. Dynamic Metalloporphyrin-Based [2]Rotaxane Molecular Shuttles Stimulated by Neutral Lewis Base and Anion Coordination. Wilmore JT; Cheong Tse Y; Docker A; Whitehead C; Williams CK; Beer PD Chemistry; 2023 Jun; 29(33):e202300608. PubMed ID: 36929530 [TBL] [Abstract][Full Text] [Related]
22. Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle. Řezanka M; Langton MJ; Beer PD Chem Commun (Camb); 2015 Mar; 51(21):4499-502. PubMed ID: 25682747 [TBL] [Abstract][Full Text] [Related]
23. Increased halide recognition strength by enhanced intercomponent preorganisation in triazolium containing [2]rotaxanes. White NG; Costa PJ; Carvalho S; Félix V; Beer PD Chemistry; 2013 Dec; 19(52):17751-65. PubMed ID: 24273039 [TBL] [Abstract][Full Text] [Related]
24. Anion chelation-induced porphyrin protonation and its application for chloride anion sensing. Zhang Y; Li MX; Lü MY; Yang RH; Liu F; Li KA J Phys Chem A; 2005 Aug; 109(33):7442-8. PubMed ID: 16834113 [TBL] [Abstract][Full Text] [Related]
25. Reverse shuttling in a fullerene-stoppered rotaxane. Mateo-Alonso A; Fioravanti G; Marcaccio M; Paolucci F; Jagesar DC; Brouwer AM; Prato M Org Lett; 2006 Oct; 8(22):5173-6. PubMed ID: 17048871 [TBL] [Abstract][Full Text] [Related]
26. Photoinduced electron transfer in porphyrin- and fullerene/porphyrin-based rotaxanes as studied by time-resolved EPR spectroscopy. Jakob M; Berg A; Rubin R; Levanon H; Li K; Schuster DI J Phys Chem A; 2009 May; 113(20):5846-54. PubMed ID: 19402685 [TBL] [Abstract][Full Text] [Related]
29. Halogen- and hydrogen-bonding triazole-functionalised porphyrin-based receptors for anion recognition. Gilday LC; White NG; Beer PD Dalton Trans; 2013 Nov; 42(44):15766-73. PubMed ID: 24056495 [TBL] [Abstract][Full Text] [Related]
30. A redox-active [3]rotaxane capable of binding and electrochemically sensing chloride and sulfate anions. Evans NH; Serpell CJ; Beer PD Chem Commun (Camb); 2011 Aug; 47(31):8775-7. PubMed ID: 21743929 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and investigation of host-[2]rotaxanes that bind metal cations. Wang X; Zhu J; Smithrud DB J Org Chem; 2010 May; 75(10):3358-70. PubMed ID: 20411910 [TBL] [Abstract][Full Text] [Related]
35. A Chiral Halogen-Bonding [3]Rotaxane for the Recognition and Sensing of Biologically Relevant Dicarboxylate Anions. Lim JYC; Marques I; Félix V; Beer PD Angew Chem Int Ed Engl; 2018 Jan; 57(2):584-588. PubMed ID: 29178623 [TBL] [Abstract][Full Text] [Related]
36. A novel diketopyrrolopyrrole (DPP)-based [2]rotaxane for highly selective optical sensing of fluoride. Raju MV; Lin HC Org Lett; 2013 Mar; 15(6):1274-7. PubMed ID: 23461354 [TBL] [Abstract][Full Text] [Related]
37. Supramolecular Polypseudorotaxanes composed of star-shaped porphyrin-cored poly(epsilon-caprolactone) and alpha-cyclodextrin. Dai XH; Dong CM; Fa HB; Yan D; Wei Y Biomacromolecules; 2006 Dec; 7(12):3527-33. PubMed ID: 17154484 [TBL] [Abstract][Full Text] [Related]
38. Use of anions to allow translational isomerism of a [2]rotaxane. Lin CF; Lai CC; Liu YH; Peng SM; Chiu SH Chemistry; 2007; 13(15):4350-5. PubMed ID: 17323386 [TBL] [Abstract][Full Text] [Related]
39. Sequential deprotonation of meso-(p-hydroxyphenyl)porphyrins in DMF: from hyperporphyrins to sodium porphyrin complexes. Guo H; Jiang J; Shi Y; Wang Y; Wang Y; Dong S J Phys Chem B; 2006 Jan; 110(1):587-94. PubMed ID: 16471571 [TBL] [Abstract][Full Text] [Related]
40. Effects of ion-carrier substituents on the potentiometric-response characteristics in anion-selective membrane electrodes based on iron porphyrins. Shahrokhian S; Seifi H; Bagherzadeh M; Mousavi SR Chemphyschem; 2004 May; 5(5):652-60. PubMed ID: 15179717 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]