These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22076278)

  • 1. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging.
    Cook JR; Bouchard RR; Emelianov SY
    Biomed Opt Express; 2011 Nov; 2(11):3193-206. PubMed ID: 22076278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties.
    Chen AI; Balter ML; Chen MI; Gross D; Alam SK; Maguire TJ; Yarmush ML
    Med Phys; 2016 Jun; 43(6):3117-3131. PubMed ID: 27277058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.
    Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J
    Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of silk as a phantom material for ultrasound and photoacoustic imaging.
    Nguyen CD; Edwards SA; Iorizzo TW; Longo BN; Yaroslavsky AN; Kaplan DL; Mallidi S
    Photoacoustics; 2022 Dec; 28():100416. PubMed ID: 36386295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution acoustic mapping of tunable gelatin-based phantoms for ultrasound tissue characterization.
    Badawe HM; Raad P; Khraiche ML
    Front Bioeng Biotechnol; 2024; 12():1276143. PubMed ID: 38456002
    [No Abstract]   [Full Text] [Related]  

  • 6. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging.
    Maneas E; Xia W; Ogunlade O; Fonseca M; Nikitichev DI; David AL; West SJ; Ourselin S; Hebden JC; Vercauteren T; Desjardins AE
    Biomed Opt Express; 2018 Mar; 9(3):1151-1163. PubMed ID: 29541509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustical properties of selected tissue phantom materials for ultrasound imaging.
    Zell K; Sperl JI; Vogel MW; Niessner R; Haisch C
    Phys Med Biol; 2007 Oct; 52(20):N475-84. PubMed ID: 17921571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable phantom materials for ultrasound and optical imaging.
    Cabrelli LC; Pelissari PI; Deana AM; Carneiro AA; Pavan TZ
    Phys Med Biol; 2017 Jan; 62(2):432-447. PubMed ID: 27997374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of a tissue mimicking psyllium husk gelatin phantom for ultrasound and magnetic resonance imaging.
    Hofstetter LW; Fausett L; Mueller A; Odéen H; Payne A; Christensen DA; Parker DL
    Int J Hyperthermia; 2020; 37(1):283-290. PubMed ID: 32204632
    [No Abstract]   [Full Text] [Related]  

  • 11. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.
    Vogt WC; Jia C; Wear KA; Garra BS; Joshua Pfefer T
    J Biomed Opt; 2016 Oct; 21(10):101405. PubMed ID: 26886681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical tuning of copolymer-in-oil tissue-mimicking materials for multispectral photoacoustic imaging.
    Khodaverdi A; Cinthio M; Reistad E; Erlöv T; Malmsjö M; Zackrisson S; Reistad N
    Biomed Phys Eng Express; 2024 Jul; 10(5):. PubMed ID: 38959869
    [No Abstract]   [Full Text] [Related]  

  • 13. Glycerol-in-SEBS gel as a material to manufacture stable wall-less vascular phantom for ultrasound and photoacoustic imaging.
    Cabrelli LC; Uliana JH; da Cruz Junior LB; Bachmann L; Carneiro AAO; Pavan TZ
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34496358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Tissue-Mimicking Phantom of the Brain for Ultrasonic Studies.
    Taghizadeh S; Labuda C; Mobley J
    Ultrasound Med Biol; 2018 Dec; 44(12):2813-2820. PubMed ID: 30274683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets.
    Vidallon MLP; Salimova E; Crawford SA; Teo BM; Tabor RF; Bishop AI
    Ultrason Sonochem; 2022 May; 86():106041. PubMed ID: 35617883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms.
    Hacker L; Joseph J; Ivory AM; Saed MO; Zeqiri B; Rajagopal S; Bohndiek SE
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3593-3603. PubMed ID: 34152979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue equivalent vessel phantoms for intravascular ultrasound.
    Ryan LK; Foster FS
    Ultrasound Med Biol; 1997; 23(2):261-73. PubMed ID: 9140183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time.
    Lai P; Xu X; Wang LV
    J Biomed Opt; 2014 Mar; 19(3):35002. PubMed ID: 24604534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Stable Phantom Material for Optical and Acoustic Imaging.
    Hacker L; Ivory AM; Joseph J; Gröhl J; Zeqiri B; Rajagopal S; Bohndiek SE
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37395576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.