BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22076333)

  • 1. UV Raman markers for structural analysis of aromatic side chains in proteins.
    Takeuchi H
    Anal Sci; 2011; 27(11):1077-86. PubMed ID: 22076333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman structural markers of tryptophan and histidine side chains in proteins.
    Takeuchi H
    Biopolymers; 2003; 72(5):305-17. PubMed ID: 12949821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopy of proteins.
    Benevides JM; Overman SA; Thomas GJ
    Curr Protoc Protein Sci; 2004 Nov; Chapter 17():17.8.1-17.8.35. PubMed ID: 18429253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode recognition in UV resonance Raman spectra of imidazole: histidine monitoring in proteins.
    Balakrishnan G; Jarzecki AA; Wu Q; Kozlowski PM; Wang D; Spiro TG
    J Phys Chem B; 2012 Aug; 116(31):9387-95. PubMed ID: 22779777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and side chains environments of recombinant human interleukin-1 receptor antagonist (rh-IL-1ra) probed by raman, raman optical activity, and UV-resonance Raman spectroscopy.
    Wen ZQ; Cao X; Vance A
    J Pharm Sci; 2008 Jun; 97(6):2228-41. PubMed ID: 17914732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy of proteins and nucleoproteins.
    Nemecek D; Stepanek J; Thomas GJ
    Curr Protoc Protein Sci; 2013; Chapter 17():Unit17.8. PubMed ID: 23377849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new Raman spectroscopic probe of both the protonation state and noncovalent interactions of histidine residues.
    Hoffman KW; Romei MG; Londergan CH
    J Phys Chem A; 2013 Jul; 117(29):5987-96. PubMed ID: 23451758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing protein structure and dynamics by second-derivative ultraviolet absorption analysis of cation-{pi} interactions.
    Lucas LH; Ersoy BA; Kueltzo LA; Joshi SB; Brandau DT; Thyagarajapuram N; Peek LJ; Middaugh CR
    Protein Sci; 2006 Oct; 15(10):2228-43. PubMed ID: 16963649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into intramolecular Trp and His side-chain orientation and stereospecific π interactions surrounding metal centers: an investigation using protein metal-site mimicry in solution.
    Yang CM; Zhang J
    Chemistry; 2010 Sep; 16(35):10854-65. PubMed ID: 20669189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics.
    Miura T; Takeuchi H; Harada I
    Biochemistry; 1988 Jan; 27(1):88-94. PubMed ID: 3349046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation-pi Interactions and oxidative effects on Cu+ and Cu2+ binding to Phe, Tyr, Trp, and His amino acids in the gas phase. Insights from first-principles calculations.
    Rimola A; Rodríguez-Santiago L; Sodupe M
    J Phys Chem B; 2006 Nov; 110(47):24189-99. PubMed ID: 17125391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation.
    Aubrey KL; Thomas GJ
    Biophys J; 1991 Dec; 60(6):1337-49. PubMed ID: 1777561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared and Raman bands of phytantriol as markers of hydrogen bonding and interchain interaction.
    Misiūnas A; Niaura G; Talaikyte Z; Eicher-Lorka O; Razumas V
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):945-57. PubMed ID: 15961342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides.
    Wei F; Zhang D; Halas NJ; Hartgerink JD
    J Phys Chem B; 2008 Jul; 112(30):9158-64. PubMed ID: 18610961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation-pi interactions involving aromatic amino acids.
    Dougherty DA
    J Nutr; 2007 Jun; 137(6 Suppl 1):1504S-1508S; discussion 1516S-1517S. PubMed ID: 17513416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New structural insights from Raman spectroscopy of proteins and their assemblies.
    Thomas GJ
    Biopolymers; 2002; 67(4-5):214-25. PubMed ID: 12012434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study.
    Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T
    Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-covalent interactions in blue copper protein probed by Met16 mutation and electronic and resonance Raman spectroscopy of Achromobacter cycloclastes pseudoazurin.
    Fitzpatrick MB; Obara Y; Fujita K; Brown DE; Dooley DM; Kohzuma T; Czernuszewicz RS
    J Inorg Biochem; 2010 Mar; 104(3):250-60. PubMed ID: 20007000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV resonance Raman and excited-state relaxation rate studies of hemoglobin.
    Cho N; Song S; Asher SA
    Biochemistry; 1994 May; 33(19):5932-41. PubMed ID: 8180222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.