BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22076333)

  • 21. Time-resolved ultraviolet resonance Raman studies of protein structure: application to bacteriorhodopsin.
    Ames JB; Ros M; Raap J; Lugtenburg J; Mathies RA
    Biochemistry; 1992 Jun; 31(23):5328-34. PubMed ID: 1606157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aromatic interactions at atom-to-atom contact and just beyond: a case study of protein interactions of NAD⁺/NADP⁺.
    Gupta P; Durani S
    Int J Biol Macromol; 2011 Dec; 49(5):999-1006. PubMed ID: 21903128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman study of the thermal behaviour and conformational stability of basic pancreatic trypsin inhibitor.
    Carmona P; Molina M; Rodríguez-Casado A
    Eur Biophys J; 2003 May; 32(2):137-43. PubMed ID: 12734702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An experimental and theoretical study of the amino acid side chain Raman bands in proteins.
    Sjöberg B; Foley S; Cardey B; Enescu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():300-11. PubMed ID: 24681316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman spectroscopic characterization of tryptophan side chains in lysozyme bound to inhibitors: role of the hydrophobic box in the enzymatic function.
    Miura T; Takeuchi H; Harada I
    Biochemistry; 1991 Jun; 30(24):6074-80. PubMed ID: 1646007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-UV circular dichroism and UV resonance Raman spectra of individual tryptophan residues in human hemoglobin and their changes upon the quaternary structure transition.
    Nagai M; Nagatomo S; Nagai Y; Ohkubo K; Imai K; Kitagawa T
    Biochemistry; 2012 Jul; 51(30):5932-41. PubMed ID: 22769585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ultraviolet resonance Raman study of dehydrogenase enzymes and their interactions with coenzymes and substrates.
    Austin JC; Wharton CW; Hester RE
    Biochemistry; 1989 Feb; 28(4):1533-8. PubMed ID: 2655694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quaternary structure sensitive tyrosine interactions in hemoglobin: a UV resonance Raman study of the double mutant rHb (beta99Asp-->Asn, alpha42Tyr-->Asp).
    Huang S; Peterson ES; Ho C; Friedman JM
    Biochemistry; 1997 May; 36(20):6197-206. PubMed ID: 9166792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins.
    Lednev IK; Ermolenkov VV; He W; Xu M
    Anal Bioanal Chem; 2005 Jan; 381(2):431-7. PubMed ID: 15625596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Side chain dependence of intensity and wavenumber position of amide I' in IR and visible Raman spectra of XA and AX dipeptides.
    Measey T; Hagarman A; Eker F; Griebenow K; Schweitzer-Stenner R
    J Phys Chem B; 2005 Apr; 109(16):8195-205. PubMed ID: 16851958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide detection and structure determination in live cells using confocal Raman microscopy.
    Terentis AC; Ye J
    Methods Mol Biol; 2013; 1081():211-36. PubMed ID: 24014442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geometry of nonbonded interactions involving planar groups in proteins.
    Chakrabarti P; Bhattacharyya R
    Prog Biophys Mol Biol; 2007; 95(1-3):83-137. PubMed ID: 17629549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raman spectroscopy of the filamentous virus Ff (fd, fl, M13): structural interpretation for coat protein aromatics.
    Overman SA; Thomas GJ
    Biochemistry; 1995 Apr; 34(16):5440-51. PubMed ID: 7727402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aromatic side-chain interactions in proteins: near- and far-sequence Tyr-X pairs.
    Meurisse R; Brasseur R; Thomas A
    Proteins; 2004 Feb; 54(3):478-90. PubMed ID: 14747996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aromatic interactions in unusual backbone nitrogen-coordinated zinc peptide complexes: a crystallographic and spectroscopic study.
    Novokmet S; Heinemann FW; Zahl A; Alsfasser R
    Inorg Chem; 2005 Jun; 44(13):4796-805. PubMed ID: 15962988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural characterization of the filamentous bacteriophage PH75 from Thermus thermophilus by Raman and UV-resonance Raman spectroscopy.
    Overman SA; Bondre P; Maiti NC; Thomas GJ
    Biochemistry; 2005 Mar; 44(8):3091-100. PubMed ID: 15723554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protonation of histidine and histidine-tryptophan interaction in the activation of the M2 ion channel from influenza a virus.
    Okada A; Miura T; Takeuchi H
    Biochemistry; 2001 May; 40(20):6053-60. PubMed ID: 11352741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultraviolet resonance Raman spectroscopy of bacteriorhodopsin.
    Netto MM; Fodor SP; Mathies RA
    Photochem Photobiol; 1990 Sep; 52(3):605-7. PubMed ID: 2284352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between cytochrome c2 and the photosynthetic reaction center from Rhodobacter sphaeroides: the cation-pi interaction.
    Paddock ML; Weber KH; Chang C; Okamura MY
    Biochemistry; 2005 Jul; 44(28):9619-25. PubMed ID: 16008347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.