These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Leclerc E; Sakai Y; Fujii T Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878 [TBL] [Abstract][Full Text] [Related]
5. Perfusion culture of mammalian cells in a microfluidic channel with a built-in pillar array. Zhang C Methods Mol Biol; 2012; 853():83-94. PubMed ID: 22323142 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lee KS; Boccazzi P; Sinskey AJ; Ram RJ Lab Chip; 2011 May; 11(10):1730-9. PubMed ID: 21445442 [TBL] [Abstract][Full Text] [Related]
9. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells. Xu H; Wu J; Chu CC; Shuler ML Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484 [TBL] [Abstract][Full Text] [Related]
10. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Sung JH; Shuler ML Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816 [TBL] [Abstract][Full Text] [Related]
11. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments. Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic platforms for hepatocyte cell culture: new technologies and applications. Goral VN; Yuen PK Ann Biomed Eng; 2012 Jun; 40(6):1244-54. PubMed ID: 22042626 [TBL] [Abstract][Full Text] [Related]
13. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315 [TBL] [Abstract][Full Text] [Related]
14. Low density cell culture of locust neurons in closed-channel microfluidic devices. Göbbels K; Thiebes AL; van Ooyen A; Schnakenberg U; Bräunig P J Insect Physiol; 2010 Aug; 56(8):1003-9. PubMed ID: 20566412 [TBL] [Abstract][Full Text] [Related]
15. In-situ measurement of cellular microenvironments in a microfluidic device. Lin Z; Cherng-Wen T; Roy P; Trau D Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282 [TBL] [Abstract][Full Text] [Related]
16. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture. Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722 [TBL] [Abstract][Full Text] [Related]
17. Self-loading and cell culture in one layer microfluidic devices. Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238 [TBL] [Abstract][Full Text] [Related]
18. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Leclerc E; El Kirat K; Griscom L Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187 [TBL] [Abstract][Full Text] [Related]
20. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures. Polinkovsky M; Gutierrez E; Levchenko A; Groisman A Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]