These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22076617)

  • 1. Optimality and thermodynamics determine the evolution of transcriptional regulatory networks.
    Avila-Elchiver M; Nagrath D; Yarmush ML
    Mol Biosyst; 2012 Feb; 8(2):511-530. PubMed ID: 22076617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacing cellular networks of S. cerevisiae and E. coli: connecting dynamic and genetic information.
    de Matos Simoes R; Dehmer M; Emmert-Streib F
    BMC Genomics; 2013 May; 14():324. PubMed ID: 23663484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm for network motif discovery in biological networks.
    Qin G; Gao L
    Int J Data Min Bioinform; 2012; 6(1):1-16. PubMed ID: 22479815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network.
    Dobrin R; Beg QK; Barabási AL; Oltvai ZN
    BMC Bioinformatics; 2004 Jan; 5():10. PubMed ID: 15018656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.
    He J; Wang C; Qiu K; Zhong W
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S6. PubMed ID: 25350277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to evaluate the topological significance of motifs and other patterns in regulatory networks.
    Goemann B; Wingender E; Potapov AP
    BMC Syst Biol; 2009 May; 3():53. PubMed ID: 19454001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network motif-based analysis of regulatory patterns in paralogous gene pairs.
    Melkus G; Rucevskis P; Celms E; Čerāns K; Freivalds K; Kikusts P; Lace L; Opmanis M; Rituma D; Viksna J
    J Bioinform Comput Biol; 2020 Jun; 18(3):2040008. PubMed ID: 32698721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary dynamics of prokaryotic transcriptional regulatory networks.
    Madan Babu M; Teichmann SA; Aravind L
    J Mol Biol; 2006 Apr; 358(2):614-33. PubMed ID: 16530225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The topological relationship between the large-scale attributes and local interaction patterns of complex networks.
    Vázquez A; Dobrin R; Sergi D; Eckmann JP; Oltvai ZN; Barabási AL
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17940-5. PubMed ID: 15598746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the origin of distribution patterns of motifs in biological networks.
    Konagurthu AS; Lesk AM
    BMC Syst Biol; 2008 Aug; 2():73. PubMed ID: 18700017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formal Analysis of Network Motifs Links Structure to Function in Biological Programs.
    Dunn SJ; Kugler H; Yordanov B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):261-271. PubMed ID: 31722483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridge and brick network motifs: identifying significant building blocks from complex biological systems.
    Huang CY; Cheng CY; Sun CT
    Artif Intell Med; 2007 Oct; 41(2):117-27. PubMed ID: 17825540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network motif identification in stochastic networks.
    Jiang R; Tu Z; Chen T; Sun F
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9404-9. PubMed ID: 16769903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disjoint motif discovery in biological network using pattern join method.
    Patra S; Mohapatra A
    IET Syst Biol; 2019 Oct; 13(5):213-224. PubMed ID: 31538955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks.
    Ma'ayan A; Cecchi GA; Wagner J; Rao AR; Iyengar R; Stolovitzky G
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19235-40. PubMed ID: 19033453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting patterns of gene expression: signatures of coregulation, the data processing inequality, and triplet motifs.
    Ku WL; Duggal G; Li Y; Girvan M; Ott E
    PLoS One; 2012; 7(2):e31969. PubMed ID: 22393375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional 5' UTR motif discovery with LESMoN: Local Enrichment of Sequence Motifs in biological Networks.
    Lavallée-Adam M; Cloutier P; Coulombe B; Blanchette M
    Nucleic Acids Res; 2017 Oct; 45(18):10415-10427. PubMed ID: 28977652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic properties of network motifs contribute to biological network organization.
    Prill RJ; Iglesias PA; Levchenko A
    PLoS Biol; 2005 Nov; 3(11):e343. PubMed ID: 16187794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.