These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2207671)

  • 1. Uncoupling of cerebral blood flow and glucose metabolism in conscious rats with chronic renal hypertension.
    Wall KM; Wainman DS; Shaver SW; Gross PM
    Brain Res; 1990 Jun; 521(1-2):333-7. PubMed ID: 2207671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoperfusion of cerebral cortex in renal hypertensive rats.
    Wall KM; Gross PM
    Am J Hypertens; 1991 May; 4(5 Pt 1):444-8. PubMed ID: 2069779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical threshold levels of nucleus locus coeruleus in normotensive and renovascular hypertensive rats.
    Kawamura H; Ferrone RF; Frohlich ED
    Nihon Jinzo Gakkai Shi; 1983 Jan; 25(1):21-6. PubMed ID: 6842904
    [No Abstract]   [Full Text] [Related]  

  • 4. Local cerebral glucose utilization and blood flow during metabolic acidosis.
    Kuschinsky W; Suda S; Sokoloff L
    Am J Physiol; 1981 Nov; 241(5):H772-7. PubMed ID: 7304767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pentoxifylline: cerebral blood flow and glucose utilization in conscious spontaneously hypertensive rats.
    Johansson BB
    Stroke; 1986; 17(4):744-7. PubMed ID: 3738959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of N6-cyclohexyladenosine on local cerebral blood flow and glucose utilisation in the conscious rat.
    Grome JJ; Stefanovich V
    Acta Physiol Scand Suppl; 1986; 552():86-9. PubMed ID: 3468756
    [No Abstract]   [Full Text] [Related]  

  • 7. Regional cerebral glucose metabolism and blood flow during the silent phase of methylmercury neurotoxicity in rats.
    Hargreaves RJ; Eley BP; Moorhouse SR; Pelling D
    J Neurochem; 1988 Nov; 51(5):1350-5. PubMed ID: 3171583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow and oxidative metabolism in conscious Fischer-344 rats of different ages.
    Takei H; Fredericks WR; London ED; Rapoport SI
    J Neurochem; 1983 Mar; 40(3):801-5. PubMed ID: 6827277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain.
    Cremer JE; Cunningham VJ; Seville MP
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):291-302. PubMed ID: 6874738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in responsiveness of noradrenergic neurons of the locus coeruleus in deoxycorticosterone acetate (DOCA)-salt hypertensive rats.
    Berecek KH; Olpe HR; Mah SC; Hofbauer KG
    Brain Res; 1987 Jan; 401(2):303-11. PubMed ID: 2880643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed postischemic hypoperfusion: evidence against involvement of the noradrenergic locus ceruleus system.
    Blomqvist P; Lindvall O; Wieloch T
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):425-9. PubMed ID: 6432810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional cerebral blood flow and glucose utilization during hyperinsulinemia.
    Duckrow RB
    Brain Res; 1988 Oct; 462(2):363-6. PubMed ID: 3191397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoregulation of cerebral blood flow during early experimental renal hypertension in the conscious dog.
    Allotey JB; Klassen GA
    Am J Physiol; 1978 Jan; 234(1):H35-9. PubMed ID: 623273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis.
    Schröck H; Kuschinsky W
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1220-7. PubMed ID: 2679148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral vascular resistance in experimental renal and DCA hypertension.
    Flohr H; Dahners HW; Conradi H; Redel D; Breull W; Kikis D; Stoepel K
    Eur Neurol; 1971-1972; 6(1):39-42. PubMed ID: 5153451
    [No Abstract]   [Full Text] [Related]  

  • 16. Cerebral blood flow during chronic hypoglycemia in the rat.
    Bryan RM; Pelligrino DA
    Brain Res; 1988 Dec; 475(2):397-400. PubMed ID: 3063334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat.
    Vaucher E; Borredon J; Bonvento G; Seylaz J; Lacombe P
    J Cereb Blood Flow Metab; 1997 Jun; 17(6):686-94. PubMed ID: 9236725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local cerebral blood flow and glucose utilization after blood exchange with a hemoglobin-based O2 carrier in conscious rats.
    Waschke K; Schröck H; Albrecht DM; van Ackern K; Kuschinsky W
    Am J Physiol; 1993 Oct; 265(4 Pt 2):H1243-8. PubMed ID: 8238411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of glycerol on local cerebral glucose utilization and local cerebral blood flow of hypoxic rats].
    Itoh E; Takiguchi H; Shimizu A; Wako N; Ueno H; Chigasaki H; Ishii S
    No To Shinkei; 1987 Mar; 39(3):227-33. PubMed ID: 3580211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of gamma-hydroxybutyrate on the relationship between local cerebral glucose utilization and local cerebral blood flow in the rat brain.
    Kuschinsky W; Suda S; Sokoloff L
    J Cereb Blood Flow Metab; 1985 Mar; 5(1):58-64. PubMed ID: 3972924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.