These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 2207671)

  • 41. Diminution of metabolism/blood flow uncoupling following traumatic brain injury in rats in response to high-dose human albumin treatment.
    Ginsberg MD; Zhao W; Belayev L; Alonso OF; Liu Y; Loor JY; Busto R
    J Neurosurg; 2001 Mar; 94(3):499-509. PubMed ID: 11235957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of fentanyl, droperidol, and innovar on canine cerebral metabolism and blood flow.
    Michenfelder JD; Theye RA
    Br J Anaesth; 1971 Jul; 43(7):630-6. PubMed ID: 5564230
    [No Abstract]   [Full Text] [Related]  

  • 43. [Local cerebral blood flow and glucose metabolism during seizure in spontaneously epileptic El Mice].
    Hosokawa C; Ochi H; Yamagami S; Kawabe J; Kobashi T; Okamura T; Yamada R
    Kaku Igaku; 1995 Sep; 32(9):979-87. PubMed ID: 8523846
    [TBL] [Abstract][Full Text] [Related]  

  • 44. (S)-emopamil, a novel calcium and serotonin antagonist for the treatment of cerebrovascular disorders. 3rd communication: effect on postischemic cerebral blood flow and metabolism, and ischemic neuronal cell death.
    Szabo L; Hofmann HP
    Arzneimittelforschung; 1989 Mar; 39(3):314-9. PubMed ID: 2757657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension.
    Ye S; Zhong H; Yanamadala S; Campese VM
    Hypertension; 2006 Aug; 48(2):309-15. PubMed ID: 16785328
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cerebral norepinephrine depletion enhances recovery after brain ischemia.
    Busto R; Harik SI; Yoshida S; Scheinberg P; Ginsberg MD
    Ann Neurol; 1985 Sep; 18(3):329-36. PubMed ID: 4051459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mismatch in cerebral blood flow and glucose metabolism after the forced swim stress in rats.
    Kameno Y; Suzuki K; Takagai S; Iwata K; Matsuzaki H; Takahashi K; Wakuda T; Iwata Y; Magata Y; Mori N
    Acta Neuropsychiatr; 2016 Dec; 28(6):352-356. PubMed ID: 27321482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in regional cerebral blood flow and glucose metabolism associated with symptoms of pyrethroid toxicity.
    Cremer JE; Seville MP
    Neurotoxicology; 1985; 6(3):1-12. PubMed ID: 4047507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion.
    Back T; Zhao W; Ginsberg MD
    J Cereb Blood Flow Metab; 1995 Jul; 15(4):566-77. PubMed ID: 7790406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Presence of transendothelial channels in cerebral endothelium in chronic hypertension.
    Nag S
    Acta Neurochir Suppl (Wien); 1990; 51():335-7. PubMed ID: 2151011
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards imaging of cerebral blood flow and metabolism on a microscopical scale in vivo.
    Villringer A; Dirnagl U
    Adv Exp Med Biol; 1993; 333():193-202. PubMed ID: 8362660
    [No Abstract]   [Full Text] [Related]  

  • 52. [Two interesting cases of renal hypertension].
    Momose G; Katayama T; Kitahara K; Nakada T; Yoshida T
    Nihon Hinyokika Gakkai Zasshi; 1969 Jun; 60(6):516-28. PubMed ID: 5817248
    [No Abstract]   [Full Text] [Related]  

  • 53. Factors influencing cerebral blood flow and metabolism; a review.
    SCHEINBERG P; JAYNE HW
    Circulation; 1952 Feb; 5(2):225-34. PubMed ID: 14896467
    [No Abstract]   [Full Text] [Related]  

  • 54. Histochemical demonstration of ascorbic acid in the locus coeruleus of the mammalian brain.
    SHIMIZU N; MATSUNAMI T; ONISHI S
    Nature; 1960 May; 186():479-80. PubMed ID: 14446008
    [No Abstract]   [Full Text] [Related]  

  • 55. Ionic and metabolic control of local cerebral blood flow.
    Betz E
    Acta Clin Belg; 1977; 32(2):119-28. PubMed ID: 899601
    [No Abstract]   [Full Text] [Related]  

  • 56. Uncoupling of cerebral blood flow and glucose metabolism in conscious rats with chronic renal hypertension.
    Wall KM; Wainman DS; Shaver SW; Gross PM
    Brain Res; 1990 Jun; 521(1-2):333-7. PubMed ID: 2207671
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hypoperfusion of cerebral cortex in renal hypertensive rats.
    Wall KM; Gross PM
    Am J Hypertens; 1991 May; 4(5 Pt 1):444-8. PubMed ID: 2069779
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrical threshold levels of nucleus locus coeruleus in normotensive and renovascular hypertensive rats.
    Kawamura H; Ferrone RF; Frohlich ED
    Nihon Jinzo Gakkai Shi; 1983 Jan; 25(1):21-6. PubMed ID: 6842904
    [No Abstract]   [Full Text] [Related]  

  • 59. Local cerebral glucose utilization and blood flow during metabolic acidosis.
    Kuschinsky W; Suda S; Sokoloff L
    Am J Physiol; 1981 Nov; 241(5):H772-7. PubMed ID: 7304767
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pentoxifylline: cerebral blood flow and glucose utilization in conscious spontaneously hypertensive rats.
    Johansson BB
    Stroke; 1986; 17(4):744-7. PubMed ID: 3738959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.