BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22076723)

  • 1. Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK).
    Thompson AD; Bernard SM; Skiniotis G; Gestwicki JE
    Cell Stress Chaperones; 2012 May; 17(3):313-27. PubMed ID: 22076723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the chaperone DnaK allosterism by the nucleotide exchange factor GrpE.
    Melero R; Moro F; Pérez-Calvo MÁ; Perales-Calvo J; Quintana-Gallardo L; Llorca O; Muga A; Valpuesta JM
    J Biol Chem; 2015 Apr; 290(16):10083-92. PubMed ID: 25739641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle.
    Banerjee R; Jayaraj GG; Peter JJ; Kumar V; Mapa K
    FEBS J; 2016 Aug; 283(15):2853-68. PubMed ID: 27248857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK).
    Chang L; Thompson AD; Ung P; Carlson HA; Gestwicki JE
    J Biol Chem; 2010 Jul; 285(28):21282-91. PubMed ID: 20439464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone.
    Gässler CS; Buchberger A; Laufen T; Mayer MP; Schröder H; Valencia A; Bukau B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15229-34. PubMed ID: 9860951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70.
    Wittung-Stafshede P; Guidry J; Horne BE; Landry SJ
    Biochemistry; 2003 May; 42(17):4937-44. PubMed ID: 12718535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state.
    Liu Q; Li H; Yang Y; Tian X; Su J; Zhou L; Liu Q
    Cell Stress Chaperones; 2017 Mar; 22(2):201-212. PubMed ID: 27975204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational heterogeneity in the Hsp70 chaperone-substrate ensemble identified from analysis of NMR-detected titration data.
    Sekhar A; Nagesh J; Rosenzweig R; Kay LE
    Protein Sci; 2017 Nov; 26(11):2207-2220. PubMed ID: 28833766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function.
    Suzuki H; Ikeda A; Tsuchimoto S; Adachi K; Noguchi A; Fukumori Y; Kanemori M
    J Biol Chem; 2012 Jun; 287(23):19275-83. PubMed ID: 22496372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein.
    Sarbeng EB; Liu Q; Tian X; Yang J; Li H; Wong JL; Zhou L; Liu Q
    J Biol Chem; 2015 Apr; 290(14):8849-62. PubMed ID: 25635056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of the Hsp70 chaperone system observed with single proteins.
    Nunes JM; Mayer-Hartl M; Hartl FU; Müller DJ
    Nat Commun; 2015 Feb; 6():6307. PubMed ID: 25686738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(3):509-22. PubMed ID: 17882322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.
    Winter J; Linke K; Jatzek A; Jakob U
    Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ.
    Suh WC; Lu CZ; Gross CA
    J Biol Chem; 1999 Oct; 274(43):30534-9. PubMed ID: 10521435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli.
    Zmijewski MA; Macario AJ; Lipińska B
    J Mol Biol; 2004 Feb; 336(2):539-49. PubMed ID: 14757064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterisation of the chaperones DnaK, DnaJ, and GrpE from Clostridium acetobutylicum.
    Rüngeling E; Laufen T; Bahl H
    FEMS Microbiol Lett; 1999 Jan; 170(1):119-23. PubMed ID: 9919660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.