These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 22076747)
1. Experimental comparison of aerial larvicides and habitat modification for controlling disease-carrying Aedes vigilax mosquitoes. de Little SC; Williamson GJ; Bowman DM; Whelan PI; Brook BW; Bradshaw CJ Pest Manag Sci; 2012 May; 68(5):709-17. PubMed ID: 22076747 [TBL] [Abstract][Full Text] [Related]
2. Determining meteorological drivers of salt marsh mosquito peaks in tropical northern Australia. Jacups SP; Carter J; Kurucz N; McDonnell J; Whelan PI J Vector Ecol; 2015 Dec; 40(2):277-81. PubMed ID: 26611962 [TBL] [Abstract][Full Text] [Related]
3. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Arredondo-Jiménez JI; Valdez-Delgado KM Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749 [TBL] [Abstract][Full Text] [Related]
4. A geospatial evaluation of Aedes vigilax larval control efforts across a coastal wetland, Northern Territory, Australia. Kurucz N; Whelan PI; Carter JM; Jacups SP J Vector Ecol; 2009 Dec; 34(2):317-23. PubMed ID: 20836835 [TBL] [Abstract][Full Text] [Related]
5. Field evaluation of the bioefficacy of diflubenzuron (Dimilin) against container-breeding Aedes sp. mosquitoes. Chen CD; Seleena B; Chiang YF; Lee HL Trop Biomed; 2008 Apr; 25(1):80-6. PubMed ID: 18600208 [TBL] [Abstract][Full Text] [Related]
6. Runnelling to control saltmarsh mosquitoes: long-term efficacy and environmental impacts. Dale PE; Dale PT; Hulsman K; Kay BH J Am Mosq Control Assoc; 1993 Jun; 9(2):174-81. PubMed ID: 8350074 [TBL] [Abstract][Full Text] [Related]
7. Larvicidal and Adulticidal Activity of Chroman and Chromene Analogues against Susceptible and Permethrin-Resistant Mosquito Strains. Meepagala KM; Estep AS; Becnel JJ J Agric Food Chem; 2016 Jun; 64(24):4914-20. PubMed ID: 27249182 [TBL] [Abstract][Full Text] [Related]
8. Synergistic efficacy of botanical blends with and without synthetic insecticides against Aedes aegypti and Culex annulirostris mosquitoes. Shaalan EA; Canyon DV; Younes MW; Abdel-Wahab H; Mansour AH J Vector Ecol; 2005 Dec; 30(2):284-8. PubMed ID: 16599164 [TBL] [Abstract][Full Text] [Related]
9. Simulated field evaluation of the efficacy of two formulations of diflubenzuron, a chitin synthesis inhibitor against larvae of Aedes aegypti (L.) (Diptera: Culicidae) in water-storage containers. Thavara U; Tawatsin A; Chansang C; Asavadachanukorn P; Zaim M; Mulla MS Southeast Asian J Trop Med Public Health; 2007 Mar; 38(2):269-75. PubMed ID: 17539276 [TBL] [Abstract][Full Text] [Related]
10. A comparison of Aedes vigilax larval population densities and associated vegetation categories in a coastal wetland, Northern Territory, Australia. Jacups SP; Kurucz N; Whelan PI; Carter JM J Vector Ecol; 2009 Dec; 34(2):311-6. PubMed ID: 20836834 [TBL] [Abstract][Full Text] [Related]
11. Towards management of mosquitoes at Homebush Bay, Sydney, Australia. I. Seasonal activity and relative abundance of adults of Aedes vigilax, Culex sitiens, and other salt-marsh species, 1993-94 through 1997-98. Webb CE; Russell RC J Am Mosq Control Assoc; 1999 Jun; 15(2):242-9. PubMed ID: 10412120 [TBL] [Abstract][Full Text] [Related]
12. Current procedures of the integrated urban vector-mosquito control as an example in Cotonou (Benin, West Africa) and Wrocław area (Poland). Rydzanicz K; Lonc E; Becker N Wiad Parazytol; 2009; 55(4):335-40. PubMed ID: 20209805 [TBL] [Abstract][Full Text] [Related]
13. Application of an alternative Aedes species (Diptera: culicidae) surveillance method in Botucatu City, Sao Paulo, Brazil. Nogueira LA; Gushi LT; Miranda JE; Madeira NG; Ribolla PE Am J Trop Med Hyg; 2005 Aug; 73(2):309-11. PubMed ID: 16103596 [TBL] [Abstract][Full Text] [Related]
14. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus. Xue RD; Barnard DR; Ali A J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743 [TBL] [Abstract][Full Text] [Related]
15. Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Luz PM; Codeço CT; Medlock J; Struchiner CJ; Valle D; Galvani AP Epidemiol Infect; 2009 Aug; 137(8):1203-15. PubMed ID: 19134235 [TBL] [Abstract][Full Text] [Related]
16. Quantifying the drivers of larval density patterns in two tropical mosquito species to maximize control efficiency. De Little SC; Bowman DM; Whelan PI; Brook BW; Bradshaw CJ Environ Entomol; 2009 Aug; 38(4):1013-21. PubMed ID: 19689879 [TBL] [Abstract][Full Text] [Related]
17. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Zhou G; Munga S; Minakawa N; Githeko AK; Yan G Am J Trop Med Hyg; 2007 Jul; 77(1):29-35. PubMed ID: 17620627 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of liquid Bacillus thuringiensis var. israelensis products for control of Australian Aedes arbovirus vectors. Brown MD; Carter J; Watson TM; Thomas P; Santaguliana G; Purdie DM; Kay BH J Am Mosq Control Assoc; 2001 Mar; 17(1):8-12. PubMed ID: 11345425 [TBL] [Abstract][Full Text] [Related]
19. Modelling the ecology of the coastal mosquitoes Aedes vigilax and Aedes camptorhynchus at Port Pirie, South Australia. Kokkinn MJ; Duval DJ; Williams CR Med Vet Entomol; 2009 Mar; 23(1):85-91. PubMed ID: 19239618 [TBL] [Abstract][Full Text] [Related]
20. Control of the Aedes vectors of the dengue viruses and Wuchereria bancrofti: the French Polynesian experience. Lardeux F; Rivière F; Séchan Y; Loncke S Ann Trop Med Parasitol; 2002 Dec; 96 Suppl 2():S105-16. PubMed ID: 12625924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]