These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22076914)

  • 1. Laser tissue welding analyzed using fluorescence, Stokes shift spectroscopy, and Huang-Rhys parameter.
    Sriramoju V; Alfano RR
    J Biophotonics; 2012 Feb; 5(2):185-93. PubMed ID: 22076914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aorta and skin tissues welded by near-infrared Cr4+:YAG laser.
    Gayen TK; Katz A; Savage HE; McCormick SA; Al-Rubaiee M; Budansky Y; Lee J; Alfano RR
    J Clin Laser Med Surg; 2003 Oct; 21(5):259-69. PubMed ID: 14651793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management of heat in laser tissue welding using NIR cover window material.
    Sriramoju V; Savage H; Katz A; Muthukattil R; Alfano RR
    Lasers Surg Med; 2011 Dec; 43(10):991-7. PubMed ID: 22127755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of Cunyite and Fosterite NIR tunable laser tissue welding using native collagen fluorescence imaging.
    Tang J; Zeng F; Evans JM; Xu B; Savage H; Ho PP; Alfano RR
    J Clin Laser Med Surg; 2000 Jun; 18(3):117-23. PubMed ID: 11803957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NIR laser tissue welding of in vitro porcine cornea and sclera tissue.
    Savage HE; Halder RK; Kartazayeu U; Rosen RB; Gayen T; McCormick SA; Patel NS; Katz A; Perry HD; Paul M; Alfano RR
    Lasers Surg Med; 2004; 35(4):293-303. PubMed ID: 15493021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence spectroscopic imaging to detect changes in collagen and elastin following laser tissue welding.
    Tang J; Zeng F; Savage H; Ho PP; Alfano RR
    J Clin Laser Med Surg; 2000 Feb; 18(1):3-8. PubMed ID: 11189110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo measurement of human dermis by 1064 nm-excited fiber Raman spectroscopy.
    Naito S; Min YK; Sugata K; Osanai O; Kitahara T; Hiruma H; Hamaguchi H
    Skin Res Technol; 2008 Feb; 14(1):18-25. PubMed ID: 18211598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser tissue welding by using collagen excitation at a 1,720  nm near-infrared optical window III.
    Thomas S; Sriramoju V; Alfano RR
    Appl Opt; 2024 Feb; 63(4):1007-1014. PubMed ID: 38437398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306-310 nm excitation.
    Baraga JJ; Rava RP; Taroni P; Kittrell C; Fitzmaurice M; Feld MS
    Lasers Surg Med; 1990; 10(3):245-61. PubMed ID: 2345474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of snap-freezing and near-infrared laser illumination on porcine prostate tissue as measured by Raman spectroscopy.
    Candefjord S; Ramser K; Lindahl OA
    Analyst; 2009 Sep; 134(9):1815-21. PubMed ID: 19684904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues.
    Huang Z; Lui H; McLean DI; Korbelik M; Zeng H
    Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues.
    Huang Z; McWilliams A; Lam S; English J; McLean DI; Lui H; Zeng H
    Int J Oncol; 2003 Sep; 23(3):649-55. PubMed ID: 12888900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer.
    Bergholt MS; Zheng W; Lin K; Ho KY; Teh M; Yeoh KG; So JB; Huang Z
    Biosens Bioelectron; 2011 Jun; 26(10):4104-10. PubMed ID: 21550225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic comparison of photogenerated tryptophan radicals in azurin: effects of local environment and structure.
    Shafaat HS; Leigh BS; Tauber MJ; Kim JE
    J Am Chem Soc; 2010 Jul; 132(26):9030-9. PubMed ID: 20536238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity ring-down laser absorption spectroscopy of jet-cooled L-tryptophan.
    Rouillé G; Arold M; Staicu A; Henning T; Huisken F
    J Phys Chem A; 2009 Jul; 113(29):8187-94. PubMed ID: 19569672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near infrared laser-tissue welding using nanoshells as an exogenous absorber.
    Gobin AM; O'Neal DP; Watkins DM; Halas NJ; Drezek RA; West JL
    Lasers Surg Med; 2005 Aug; 37(2):123-9. PubMed ID: 16047329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronous front-face fluorescence spectroscopy coupled with parallel factors (PARAFAC) analysis to study the effects of cooking time on meat.
    Sahar A; Boubellouta T; Portanguen S; Kondjoyan A; Dufour E
    J Food Sci; 2009; 74(9):E534-9. PubMed ID: 20492116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the electronic structure of the CP47 antenna protein complex of photosystem II: hole burning and fluorescence study.
    Neupane B; Dang NC; Acharya K; Reppert M; Zazubovich V; Picorel R; Seibert M; Jankowiak R
    J Am Chem Soc; 2010 Mar; 132(12):4214-29. PubMed ID: 20218564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.