BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22077149)

  • 1. Intensity-dependent exciton dynamics of (6,5) single-walled carbon nanotubes: momentum selection rules, diffusion, and nonlinear interactions.
    Harrah DM; Schneck JR; Green AA; Hersam MC; Ziegler LD; Swan AK
    ACS Nano; 2011 Dec; 5(12):9898-906. PubMed ID: 22077149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron correlation effects on the femtosecond dephasing dynamics of E22 excitons in (6,5) carbon nanotubes.
    Schneck JR; Walsh AG; Green AA; Hersam MC; Ziegler LD; Swan AK
    J Phys Chem A; 2011 Apr; 115(16):3917-23. PubMed ID: 21241060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton dynamics in semiconducting carbon nanotubes.
    Graham MW; Chmeliov J; Ma YZ; Shinohara H; Green AA; Hersam MC; Valkunas L; Fleming GR
    J Phys Chem B; 2011 May; 115(18):5201-11. PubMed ID: 21090793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension.
    Tsyboulski DA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2008 Sep; 2(9):1770-6. PubMed ID: 19206415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intense terahertz pulse induced exciton generation in carbon nanotubes.
    Watanabe S; Minami N; Shimano R
    Opt Express; 2011 Jan; 19(2):1528-38. PubMed ID: 21263694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes.
    Gao B; Hartland GV; Huang L
    ACS Nano; 2012 Jun; 6(6):5083-90. PubMed ID: 22577898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant coherent phonon generation in single-walled carbon nanotubes through near-band-edge excitation.
    Lim YS; Ahn JG; Kim JH; Yee KJ; Joo T; Baik SH; Hároz EH; Booshehri LG; Kono J
    ACS Nano; 2010 Jun; 4(6):3222-6. PubMed ID: 20469843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes.
    Cherukuri TK; Tsyboulski DA; Weisman RB
    ACS Nano; 2012 Jan; 6(1):843-50. PubMed ID: 22128755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and transient absorption spectral signatures of the single-wall carbon nanotube electronically excited triplet state.
    Park J; Deria P; Therien MJ
    J Am Chem Soc; 2011 Nov; 133(43):17156-9. PubMed ID: 21970339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.
    Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G
    Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.
    Cognet L; Tsyboulski DA; Rocha JD; Doyle CD; Tour JM; Weisman RB
    Science; 2007 Jun; 316(5830):1465-8. PubMed ID: 17556581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes.
    Park J; Deria P; Olivier JH; Therien MJ
    Nano Lett; 2014 Feb; 14(2):504-11. PubMed ID: 24329134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for long-lived, optically generated quenchers of excitons in single-walled carbon nanotubes.
    Siitonen AJ; Bachilo SM; Tsyboulski DA; Weisman RB
    Nano Lett; 2012 Jan; 12(1):33-8. PubMed ID: 22142025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy.
    Georgi C; Green AA; Hersam MC; Hartschuh A
    ACS Nano; 2010 Oct; 4(10):5914-20. PubMed ID: 20857945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes.
    Garate JA; English NJ; MacElroy JM
    J Chem Phys; 2009 Sep; 131(11):114508. PubMed ID: 19778130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.