These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 2207719)

  • 1. Functional recovery after limbic lesions in monkeys.
    Irle E; Markowitsch HJ
    Brain Res Bull; 1990 Jul; 25(1):79-92. PubMed ID: 2207719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined lesions of septum, amygdala, hippocampus, anterior thalamus, mamillary bodies and cingulate and subicular cortex fail to impair the acquisition of complex learning tasks.
    Irle E
    Exp Brain Res; 1985; 58(2):346-61. PubMed ID: 3922779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus.
    Murray EA; Mishkin M
    J Neurosci; 1998 Aug; 18(16):6568-82. PubMed ID: 9698344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal forebrain-lesioned monkeys are severely impaired in tasks of association and recognition memory.
    Irle E; Markowitsch HJ
    Ann Neurol; 1987 Dec; 22(6):735-43. PubMed ID: 3435083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities.
    Suzuki WA; Zola-Morgan S; Squire LR; Amaral DG
    J Neurosci; 1993 Jun; 13(6):2430-51. PubMed ID: 8501516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampus, fimbria-fornix, amygdala, and memory: object discriminations in rats.
    Wible CG; Shiber JR; Olton DS
    Behav Neurosci; 1992 Oct; 106(5):751-61. PubMed ID: 1445655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotype-dependent involvement of limbic areas in spatial learning and postlesion recovery.
    Ammassari-Teule M; Fagioli S; Rossi-Arnaud C
    Physiol Behav; 1992 Sep; 52(3):505-10. PubMed ID: 1409912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limbic-dependent recognition memory in monkeys develops early in infancy.
    Bachevalier J; Brickson M; Hagger C
    Neuroreport; 1993 Jan; 4(1):77-80. PubMed ID: 8453042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning impairment induced by lesion of the CA1 field of the primate hippocampus: attempts to ameliorate the impairment by transplantation of fetal CA1 tissue.
    Ridley RM; Pearson C; Kershaw TR; Hodges H; Maclean CJ; Hoyle C; Baker HF
    Exp Brain Res; 1997 Jun; 115(1):83-94. PubMed ID: 9224836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys.
    Murray EA; Gaffan EA; Flint RW
    Behav Neurosci; 1996 Feb; 110(1):30-42. PubMed ID: 8652070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia.
    Zola-Morgan S; Squire LR
    Behav Neurosci; 1985 Feb; 99(1):22-34. PubMed ID: 4041230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesions of the amygdala that spare adjacent cortical regions do not impair memory or exacerbate the impairment following lesions of the hippocampal formation.
    Zola-Morgan S; Squire LR; Amaral DG
    J Neurosci; 1989 Jun; 9(6):1922-36. PubMed ID: 2723757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of the effects of inferior temporal and limbic lesions on object discrimination learning with 24-h intertrial intervals.
    Phillips RR; Malamut BL; Bachevalier J; Mishkin M
    Behav Brain Res; 1988 Feb; 27(2):99-107. PubMed ID: 3358857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odour-place paired-associate learning and limbic thalamus: comparison of anterior, lateral and medial thalamic lesions.
    Gibb SJ; Wolff M; Dalrymple-Alford JC
    Behav Brain Res; 2006 Sep; 172(1):155-68. PubMed ID: 16769133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy.
    Murray EA; Mishkin M
    J Neurosci; 1986 Jul; 6(7):1991-2003. PubMed ID: 3734871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat.
    Su HS; Bentivoglio M
    J Comp Neurol; 1990 Jul; 297(4):582-93. PubMed ID: 1696591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleus accumbens in monkeys (Macaca fascicularis): II. Emotion and motivation.
    Stern CE; Passingham RE
    Behav Brain Res; 1996 Feb; 75(1-2):179-93. PubMed ID: 8800655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys.
    Isseroff A; Rosvold HE; Galkin TW; Goldman-Rakic PS
    Brain Res; 1982 Jan; 232(1):97-113. PubMed ID: 7034865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relational memory for object identity and spatial location in rats with lesions of perirhinal cortex, amygdala and hippocampus.
    Moses SN; Cole C; Ryan JD
    Brain Res Bull; 2005 May; 65(6):501-12. PubMed ID: 15862922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independence of memory functions and emotional behavior: separate contributions of the hippocampal formation and the amygdala.
    Zola-Morgan S; Squire LR; Alvarez-Royo P; Clower RP
    Hippocampus; 1991 Apr; 1(2):207-20. PubMed ID: 1669294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.