BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2207719)

  • 1. Functional recovery after limbic lesions in monkeys.
    Irle E; Markowitsch HJ
    Brain Res Bull; 1990 Jul; 25(1):79-92. PubMed ID: 2207719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined lesions of septum, amygdala, hippocampus, anterior thalamus, mamillary bodies and cingulate and subicular cortex fail to impair the acquisition of complex learning tasks.
    Irle E
    Exp Brain Res; 1985; 58(2):346-61. PubMed ID: 3922779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus.
    Murray EA; Mishkin M
    J Neurosci; 1998 Aug; 18(16):6568-82. PubMed ID: 9698344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal forebrain-lesioned monkeys are severely impaired in tasks of association and recognition memory.
    Irle E; Markowitsch HJ
    Ann Neurol; 1987 Dec; 22(6):735-43. PubMed ID: 3435083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities.
    Suzuki WA; Zola-Morgan S; Squire LR; Amaral DG
    J Neurosci; 1993 Jun; 13(6):2430-51. PubMed ID: 8501516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampus, fimbria-fornix, amygdala, and memory: object discriminations in rats.
    Wible CG; Shiber JR; Olton DS
    Behav Neurosci; 1992 Oct; 106(5):751-61. PubMed ID: 1445655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotype-dependent involvement of limbic areas in spatial learning and postlesion recovery.
    Ammassari-Teule M; Fagioli S; Rossi-Arnaud C
    Physiol Behav; 1992 Sep; 52(3):505-10. PubMed ID: 1409912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limbic-dependent recognition memory in monkeys develops early in infancy.
    Bachevalier J; Brickson M; Hagger C
    Neuroreport; 1993 Jan; 4(1):77-80. PubMed ID: 8453042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning impairment induced by lesion of the CA1 field of the primate hippocampus: attempts to ameliorate the impairment by transplantation of fetal CA1 tissue.
    Ridley RM; Pearson C; Kershaw TR; Hodges H; Maclean CJ; Hoyle C; Baker HF
    Exp Brain Res; 1997 Jun; 115(1):83-94. PubMed ID: 9224836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys.
    Murray EA; Gaffan EA; Flint RW
    Behav Neurosci; 1996 Feb; 110(1):30-42. PubMed ID: 8652070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia.
    Zola-Morgan S; Squire LR
    Behav Neurosci; 1985 Feb; 99(1):22-34. PubMed ID: 4041230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesions of the amygdala that spare adjacent cortical regions do not impair memory or exacerbate the impairment following lesions of the hippocampal formation.
    Zola-Morgan S; Squire LR; Amaral DG
    J Neurosci; 1989 Jun; 9(6):1922-36. PubMed ID: 2723757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of the effects of inferior temporal and limbic lesions on object discrimination learning with 24-h intertrial intervals.
    Phillips RR; Malamut BL; Bachevalier J; Mishkin M
    Behav Brain Res; 1988 Feb; 27(2):99-107. PubMed ID: 3358857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odour-place paired-associate learning and limbic thalamus: comparison of anterior, lateral and medial thalamic lesions.
    Gibb SJ; Wolff M; Dalrymple-Alford JC
    Behav Brain Res; 2006 Sep; 172(1):155-68. PubMed ID: 16769133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy.
    Murray EA; Mishkin M
    J Neurosci; 1986 Jul; 6(7):1991-2003. PubMed ID: 3734871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat.
    Su HS; Bentivoglio M
    J Comp Neurol; 1990 Jul; 297(4):582-93. PubMed ID: 1696591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleus accumbens in monkeys (Macaca fascicularis): II. Emotion and motivation.
    Stern CE; Passingham RE
    Behav Brain Res; 1996 Feb; 75(1-2):179-93. PubMed ID: 8800655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ibotenate hippocampal and extrahippocampal destruction on delayed-match and -nonmatch-to-sample behavior in rats.
    Hampson RE; Jarrard LE; Deadwyler SA
    J Neurosci; 1999 Feb; 19(4):1492-507. PubMed ID: 9952425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys.
    Isseroff A; Rosvold HE; Galkin TW; Goldman-Rakic PS
    Brain Res; 1982 Jan; 232(1):97-113. PubMed ID: 7034865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relational memory for object identity and spatial location in rats with lesions of perirhinal cortex, amygdala and hippocampus.
    Moses SN; Cole C; Ryan JD
    Brain Res Bull; 2005 May; 65(6):501-12. PubMed ID: 15862922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.