These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22077670)

  • 1. Comparison of anion removal capacities of Octolig and Cuprilig.
    Martin DF; Franz DM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1619-24. PubMed ID: 22077670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of effectiveness of removal of nuisance anions by metalloligs, metal derivatives of Octolig.
    Martin DF; Aguinaldo JS; Kondis NP; Stull FW; O'Donnell LF; Martin BB; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Sep; 43(11):1296-302. PubMed ID: 18642153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of pain-relieving drugs from aqueous solutions using Octolig and selected metalloligs.
    Martin DF; Sehgal T; Word TA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(8):788-93. PubMed ID: 26030684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of removal of aqueous perchlorate by Cuprilig, a copper(II) derivative of Octolig.
    Martin DF; Kondis NP; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):188-91. PubMed ID: 19123099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig.
    Stull FW; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1545-50. PubMed ID: 20183512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of removal of a popular NSAID from aqueous solutions with metalloligs.
    Martin DF; Hurst J; Mayers J; McKeithan CF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):782-785. PubMed ID: 31046561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of selected nuisance anions by Octolig.
    Martin DF; Lizardi CL; Schulman E; Vo B; Wynn D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan; 45(9):1144-9. PubMed ID: 20560089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced removal of aqueous BPA model compounds using Metalloligs.
    Franz DM; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):307-12. PubMed ID: 24279622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenate removal from water using sand--red mud columns.
    Genç-Fuhrman H; Bregnhøj H; McConchie D
    Water Res; 2005 Aug; 39(13):2944-54. PubMed ID: 15979686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of aqueous arsenic using iron attached to immobilized ligands (IMLIGs).
    Martin DF; O'Donnell L; Martin BB; Alldredge R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jan; 42(1):97-102. PubMed ID: 17129954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efforts to remove aqueous lithium ion using Octolig® and methylated derivatives.
    Martin DF; Bisht KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):946-949. PubMed ID: 29775126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of co-existing solutes on arsenate removal with hydrotalcite compound.
    Kiso Y; Jung YJ; Yamamoto H; Oguchi T; Kuzawa K; Yamada T; Kim SS; Ahn KH
    Water Sci Technol; 2010; 61(5):1183-8. PubMed ID: 20220240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes.
    Sevcenco AM; Paravidino M; Vrouwenvelder JS; Wolterbeek HT; van Loosdrecht MC; Hagen WR
    Water Res; 2015 Jun; 76():181-6. PubMed ID: 25817554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of anionic pollutants by pine bark is influenced by the mechanism of retention.
    Paradelo R; Conde-Cid M; Arias-Estévez M; Nóvoa-Muñoz JC; Álvarez-Rodríguez E; Fernández-Sanjurjo MJ; Núñez-Delgado A
    Chemosphere; 2017 Jan; 167():139-145. PubMed ID: 27716586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenate removal from simulated groundwater with a Donnan dialyzer.
    Zhao B; Zhao H; Dockko S; Ni J
    J Hazard Mater; 2012 May; 215-216():159-65. PubMed ID: 22436343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of phosphate from electrocoagulation post-treatment phosphate reduction using Octolig®.
    Martin DF; Gilmore B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1046-1047. PubMed ID: 28841356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber.
    Ruixia L; Jinlong G; Hongxiao T
    J Colloid Interface Sci; 2002 Apr; 248(2):268-74. PubMed ID: 16290531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH and coexisting anions on removal of phosphate from aqueous solutions by inorganic-based mesostructures.
    Choi JW; Choi YS; Hong SW; Kim DJ; Lee SH
    Water Environ Res; 2012 Jul; 84(7):596-604. PubMed ID: 22876482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applicability of poorly crystalline aluminum oxide for adsorption of arsenate.
    Park YJ; Yang JK; Lee SM; Choi SI
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(12):1376-84. PubMed ID: 21942390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.