These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22077757)

  • 1. Surface plasmon-enhanced nanopillar photodetectors.
    Senanayake P; Hung CH; Shapiro J; Lin A; Liang B; Williams BS; Huffaker DL
    Nano Lett; 2011 Dec; 11(12):5279-83. PubMed ID: 22077757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D nanopillar optical antenna photodetectors.
    Senanayake P; Hung CH; Shapiro J; Scofield A; Lin A; Williams BS; Huffaker DL
    Opt Express; 2012 Nov; 20(23):25489-96. PubMed ID: 23187366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors.
    Senanayake P; Hung CH; Farrell A; Ramirez DA; Shapiro J; Li CK; Wu YR; Hayat MM; Huffaker DL
    Nano Lett; 2012 Dec; 12(12):6448-52. PubMed ID: 23206195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.
    Wang X; Ma X; Shi E; Lu P; Dou L; Zhang X; Wang H
    Small; 2020 Mar; 16(11):e1906459. PubMed ID: 32072751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional amplified spontaneous emissions from Ag nanohole array with high diffraction orders.
    Liu Y; Lv F; Xiao J; Wu D; La J; Yin X; Wang Y; Wang W
    Opt Lett; 2023 Feb; 48(3):843-846. PubMed ID: 36723603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bloch-Surface Plasmon Polariton Enhanced Amplified and Directional Spontaneous Emission from Plasmonic Hexagonal Nanohole Array.
    Wu D; Wang Y; Liu Y; La J; He S; Lv F; Wang W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16198-16203. PubMed ID: 36920178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays.
    Ding H; Wu S; Zhang C; Li L; Sun Q; Zhou L; Li X
    Opt Express; 2020 Mar; 28(5):6511-6520. PubMed ID: 32225897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity.
    Correia-Ledo D; Gibson KF; Dhawan A; Couture M; Vo-Dinh T; Graham D; Masson JF
    J Phys Chem C Nanomater Interfaces; 2012 Mar; 116(12):6884-6892. PubMed ID: 23977402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Photon Absorptivity of Quantum Dot Infrared Photodetectors Achieved by the Surface Plasmon Effect of Metal Nanohole Array.
    Liu H; Kang Y; Meng T; Tian C; Wei G
    Nanoscale Res Lett; 2020 May; 15(1):98. PubMed ID: 32372245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon enhanced GeSn photodetectors operating at 2 µm.
    Zhou H; Zhang L; Tong J; Wu S; Son B; Chen Q; Zhang DH; Tan CS
    Opt Express; 2021 Mar; 29(6):8498-8509. PubMed ID: 33820296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films.
    Chang SH; Gray S; Schatz G
    Opt Express; 2005 Apr; 13(8):3150-65. PubMed ID: 19495214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes.
    Wong YL; Jia H; Jian A; Lei D; El Abed AI; Zhang X
    Nanoscale; 2021 Feb; 13(5):2792-2800. PubMed ID: 33491704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field localization of hexagonal and short-range ordered plasmonic nanoholes investigated by cathodoluminescence.
    Vu Thi D; Ohno T; Yamamoto N; Sannomiya T
    J Chem Phys; 2020 Feb; 152(7):074707. PubMed ID: 32087626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon polariton beams from an electrically excited plasmonic crystal.
    Canneson D; Le Moal E; Cao S; Quélin X; Dallaporta H; Dujardin G; Boer-Duchemin E
    Opt Express; 2016 Nov; 24(23):26186-26200. PubMed ID: 27857355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A surface plasmon resonance spectrometer using a super-period metal nanohole array.
    Leong H; Guo J
    Opt Express; 2012 Sep; 20(19):21318-23. PubMed ID: 23037254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanohole arrays in chemical analysis: manufacturing methods and applications.
    Masson JF; Murray-Méthot MP; Live LS
    Analyst; 2010 Jul; 135(7):1483-9. PubMed ID: 20358096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection.
    Guo W; Liu B; He Y; You E; Zhang Y; Huang S; Wang J; Wang Z
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33352752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.