These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22077825)

  • 1. A negative cooperativity mechanism of human CYP2E1 inferred from molecular dynamics simulations and free energy calculations.
    Li J; Wei DQ; Wang JF; Li YX
    J Chem Inf Model; 2011 Dec; 51(12):3217-25. PubMed ID: 22077825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. π-π Stacking mediated drug-drug interactions in human CYP2E1.
    Liu Y; Liu BY; Hao P; Li X; Li YX; Wang JF
    Proteins; 2013 Jun; 81(6):945-54. PubMed ID: 23349037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negatively cooperative binding properties of human cytochrome P450 2E1 with monocyclic substrates.
    Ping J; Wang YJ; Wang JF; Li X; Li YX; Hao P
    Curr Drug Metab; 2012 Sep; 13(7):1024-31. PubMed ID: 22591346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of differential substrate selectivities of CYP2B6 and CYP2E1 by site-directed mutagenesis and molecular modeling.
    Spatzenegger M; Liu H; Wang Q; Debarber A; Koop DR; Halpert JR
    J Pharmacol Exp Ther; 2003 Jan; 304(1):477-87. PubMed ID: 12490624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative structure-activity relationship analysis on a series of alkyl benzenes metabolized by human cytochrome p450 2E1.
    Lewis DF; Sams C; Loizou GD
    J Biochem Mol Toxicol; 2003; 17(1):47-52. PubMed ID: 12616646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for cooperative binding of azoles to CYP2E1 as interpreted through guided molecular dynamics simulations.
    Levy JW; Hartman JH; Perry MD; Miller GP
    J Mol Graph Model; 2015 Mar; 56():43-52. PubMed ID: 25544389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics, and density functional theoretical calculations.
    Park JY; Harris D
    J Med Chem; 2003 Apr; 46(9):1645-60. PubMed ID: 12699383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of a mutated residue at the entrance of the substrate access channel in cytochrome p450 engineered for vitamin D(3) hydroxylation activity.
    Fukunishi H; Yagi H; Kamijo K; Shimada J
    Biochemistry; 2011 Oct; 50(39):8302-10. PubMed ID: 21877691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site topology of human cytochrome P450 2E1.
    Mackman R; Guo Z; Guengerich FP; Ortiz de Montellano PR
    Chem Res Toxicol; 1996; 9(1):223-6. PubMed ID: 8924594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a novel reversible cytochrome P450 spectral intermediate: role of threonine 303 in P450 2E1 inactivation.
    Blobaum AL; Lu Y; Kent UM; Wang S; Hollenberg PF
    Biochemistry; 2004 Sep; 43(38):11942-52. PubMed ID: 15379534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CYP2E1 hydroxylation of aniline involves negative cooperativity.
    Hartman JH; Knott K; Miller GP
    Biochem Pharmacol; 2014 Feb; 87(3):523-33. PubMed ID: 24345333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The modeling of interactions of the CYP2E1 isoform of human cytochrome P450 with substrates].
    Potemkin VA; Grishina MA; Bartashevich EV; Zrakova TIu; Pogrebnoĭ AA
    Biofizika; 2005; 50(3):418-22. PubMed ID: 15977830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity.
    Bello M; Mendieta-Wejebe JE; Correa-Basurto J
    Biochem Pharmacol; 2014 Jul; 90(2):145-58. PubMed ID: 24794636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.
    Hartman JH; Martin HC; Caro AA; Pearce AR; Miller GP
    Toxicology; 2015 Dec; 338():47-58. PubMed ID: 26463279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico analyses of substrate interactions with human serum paraoxonase 1.
    Hu X; Jiang X; Lenz DE; Cerasoli DM; Wallqvist A
    Proteins; 2009 May; 75(2):486-98. PubMed ID: 18951406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetic consequences of induction of CYP2E1 by ligand stabilization.
    Chien JY; Thummel KE; Slattery JT
    Drug Metab Dispos; 1997 Oct; 25(10):1165-75. PubMed ID: 9321520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of CYP2E1.
    Li J; Wei DQ; Wang JF; Yu ZT; Chou KC
    Med Chem; 2012 Mar; 8(2):208-21. PubMed ID: 22385180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of inhibitor molecules with the human CYP2E1 enzyme active site.
    Martikainen LE; Rahnasto-Rilla M; Neshybova S; Lahtela-Kakkonen M; Raunio H; Juvonen RO
    Eur J Pharm Sci; 2012 Dec; 47(5):996-1005. PubMed ID: 23069620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.