BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 22077877)

  • 1. Selective transition state stabilization via hyperconjugative and conjugative assistance: stereoelectronic concept for copper-free click chemistry.
    Gold B; Shevchenko NE; Bonus N; Dudley GB; Alabugin IV
    J Org Chem; 2012 Jan; 77(1):75-89. PubMed ID: 22077877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization.
    Gold B; Dudley GB; Alabugin IV
    J Am Chem Soc; 2013 Jan; 135(4):1558-69. PubMed ID: 23272641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkynyl crown ethers as a scaffold for hyperconjugative assistance in noncatalyzed azide-alkyne click reactions: ion sensing through enhanced transition-state stabilization.
    Gold B; Batsomboon P; Dudley GB; Alabugin IV
    J Org Chem; 2014 Jul; 79(13):6221-32. PubMed ID: 24927131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis.
    Evangelio E; Rath NP; Mirica LM
    Dalton Trans; 2012 Jul; 41(26):8010-21. PubMed ID: 22517535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction.
    Shelbourne M; Chen X; Brown T; El-Sagheer AH
    Chem Commun (Camb); 2011 Jun; 47(22):6257-9. PubMed ID: 21547301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Giant Amphiphiles via simultaneous copper(I)-catalyzed azide-alkyne cycloaddition and living radical polymerization.
    Daskalaki E; Le Droumaguet B; Gérard D; Velonia K
    Chem Commun (Camb); 2012 Feb; 48(10):1586-8. PubMed ID: 21959713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Click" chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.
    Díaz DD; Rajagopal K; Strable E; Schneider J; Finn MG
    J Am Chem Soc; 2006 May; 128(18):6056-7. PubMed ID: 16669673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions.
    Angell YL; Burgess K
    Chem Soc Rev; 2007 Oct; 36(10):1674-89. PubMed ID: 17721589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein modification by strain-promoted alkyne-azide cycloaddition.
    van Hest JC; van Delft FL
    Chembiochem; 2011 Jun; 12(9):1309-12. PubMed ID: 21557431
    [No Abstract]   [Full Text] [Related]  

  • 10. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions.
    Lallana E; Riguera R; Fernandez-Megia E
    Angew Chem Int Ed Engl; 2011 Sep; 50(38):8794-804. PubMed ID: 21905176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface functionalization using catalyst-free azide-alkyne cycloaddition.
    Kuzmin A; Poloukhtine A; Wolfert MA; Popik VV
    Bioconjug Chem; 2010 Nov; 21(11):2076-85. PubMed ID: 20964340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chemical modification of liposome surfaces via a copper-mediated [3 + 2] azide-alkyne cycloaddition monitored by a colorimetric assay.
    Cavalli S; Tipton AR; Overhand M; Kros A
    Chem Commun (Camb); 2006 Aug; (30):3193-5. PubMed ID: 17028740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-promoted azide-alkyne cycloadditions of benzocyclononynes.
    Tummatorn J; Batsomboon P; Clark RJ; Alabugin IV; Dudley GB
    J Org Chem; 2012 Mar; 77(5):2093-7. PubMed ID: 22316100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ring closure to beta-turn mimics via copper-catalyzed azide/alkyne cycloadditions.
    Angell Y; Burgess K
    J Org Chem; 2005 Nov; 70(23):9595-8. PubMed ID: 16268639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile site-specific conjugation of small molecules to siRNA using click chemistry.
    Yamada T; Peng CG; Matsuda S; Addepalli H; Jayaprakash KN; Alam MR; Mills K; Maier MA; Charisse K; Sekine M; Manoharan M; Rajeev KG
    J Org Chem; 2011 Mar; 76(5):1198-211. PubMed ID: 21299239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of click chemistry to the production of DNA microarrays.
    Uszczyńska B; Ratajczak T; Frydrych E; Maciejewski H; Figlerowicz M; Markiewicz WT; Chmielewski MK
    Lab Chip; 2012 Mar; 12(6):1151-6. PubMed ID: 22318451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of copper-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation.
    Ozen C; Tüzün NŞ
    J Mol Graph Model; 2012 Apr; 34():101-7. PubMed ID: 22306418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-free 1,5-regioselective azide-alkyne [3+2]-cycloaddition.
    Kloss F; Köhn U; Jahn BO; Hager MD; Görls H; Schubert US
    Chem Asian J; 2011 Oct; 6(10):2816-24. PubMed ID: 21882350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of terpolymers by click reactions.
    Altintas O; Tunca U
    Chem Asian J; 2011 Oct; 6(10):2584-91. PubMed ID: 21595041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quick and highly efficient copper-catalyzed cycloaddition of organic azides with terminal alkynes.
    Wang D; Zhao M; Liu X; Chen Y; Li N; Chen B
    Org Biomol Chem; 2012 Jan; 10(2):229-31. PubMed ID: 22024945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.