These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 22077967)
1. Infrared spectroscopy of wafer-scale graphene. Yan H; Xia F; Zhu W; Freitag M; Dimitrakopoulos C; Bol AA; Tulevski G; Avouris P ACS Nano; 2011 Dec; 5(12):9854-60. PubMed ID: 22077967 [TBL] [Abstract][Full Text] [Related]
2. Homogeneous bilayer graphene film based flexible transparent conductor. Lee S; Lee K; Liu CH; Zhong Z Nanoscale; 2012 Jan; 4(2):639-44. PubMed ID: 22146772 [TBL] [Abstract][Full Text] [Related]
3. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy. Nicotra G; Ramasse QM; Deretzis I; La Magna A; Spinella C; Giannazzo F ACS Nano; 2013 Apr; 7(4):3045-52. PubMed ID: 23530467 [TBL] [Abstract][Full Text] [Related]
4. Electrochemistry of individual monolayer graphene sheets. Li W; Tan C; Lowe MA; Abruña HD; Ralph DC ACS Nano; 2011 Mar; 5(3):2264-70. PubMed ID: 21332139 [TBL] [Abstract][Full Text] [Related]
5. Clean transfer of graphene for isolation and suspension. Lin YC; Jin C; Lee JC; Jen SF; Suenaga K; Chiu PW ACS Nano; 2011 Mar; 5(3):2362-8. PubMed ID: 21351739 [TBL] [Abstract][Full Text] [Related]
6. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. Jin Z; Yao J; Kittrell C; Tour JM ACS Nano; 2011 May; 5(5):4112-7. PubMed ID: 21476571 [TBL] [Abstract][Full Text] [Related]
7. Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice. Papagno M; Rusponi S; Sheverdyaeva PM; Vlaic S; Etzkorn M; Pacilé D; Moras P; Carbone C; Brune H ACS Nano; 2012 Jan; 6(1):199-204. PubMed ID: 22136502 [TBL] [Abstract][Full Text] [Related]
8. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Lee S; Lee K; Zhong Z Nano Lett; 2010 Nov; 10(11):4702-7. PubMed ID: 20932046 [TBL] [Abstract][Full Text] [Related]
9. Charge inhomogeneity determines oxidative reactivity of graphene on substrates. Yamamoto M; Einstein TL; Fuhrer MS; Cullen WG ACS Nano; 2012 Sep; 6(9):8335-41. PubMed ID: 22917254 [TBL] [Abstract][Full Text] [Related]
10. Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. Kato T; Hatakeyama R ACS Nano; 2012 Oct; 6(10):8508-15. PubMed ID: 22971147 [TBL] [Abstract][Full Text] [Related]
11. Effects of layer stacking on the combination Raman modes in graphene. Rao R; Podila R; Tsuchikawa R; Katoch J; Tishler D; Rao AM; Ishigami M ACS Nano; 2011 Mar; 5(3):1594-9. PubMed ID: 21204569 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of S-doped graphene by liquid precursor. Gao H; Liu Z; Song L; Guo W; Gao W; Ci L; Rao A; Quan W; Vajtai R; Ajayan PM Nanotechnology; 2012 Jul; 23(27):275605. PubMed ID: 22710561 [TBL] [Abstract][Full Text] [Related]
13. High-quality thin graphene films from fast electrochemical exfoliation. Su CY; Lu AY; Xu Y; Chen FR; Khlobystov AN; Li LJ ACS Nano; 2011 Mar; 5(3):2332-9. PubMed ID: 21309565 [TBL] [Abstract][Full Text] [Related]
17. Growth from below: graphene bilayers on Ir(111). Nie S; Walter AL; Bartelt NC; Starodub E; Bostwick A; Rotenberg E; McCarty KF ACS Nano; 2011 Mar; 5(3):2298-306. PubMed ID: 21322532 [TBL] [Abstract][Full Text] [Related]
18. A facile route to recover intrinsic graphene over large scale. Shin DW; Lee HM; Yu SM; Lim KS; Jung JH; Kim MK; Kim SW; Han JH; Ruoff RS; Yoo JB ACS Nano; 2012 Sep; 6(9):7781-8. PubMed ID: 22928753 [TBL] [Abstract][Full Text] [Related]
19. Nanoveneers: an electrochemical approach to synthesizing conductive layered nanostructures. Xian X; Jiao L; Xue T; Wu Z; Liu Z ACS Nano; 2011 May; 5(5):4000-6. PubMed ID: 21473604 [TBL] [Abstract][Full Text] [Related]
20. Direct graphene growth on MgO: origin of the band gap. Gaddam S; Bjelkevig C; Ge S; Fukutani K; Dowben PA; Kelber JA J Phys Condens Matter; 2011 Feb; 23(7):072204. PubMed ID: 21411874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]