These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems. Schmidt MC; Rocha AM; Padmanabhan K; Shpanskaya Y; Banfield J; Scott K; Mihelcic JR; Samatova NF PLoS Comput Biol; 2012; 8(5):e1002490. PubMed ID: 22589706 [TBL] [Abstract][Full Text] [Related]
4. DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules. Hendrix W; Rocha AM; Padmanabhan K; Choudhary A; Scott K; Mihelcic JR; Samatova NF BMC Syst Biol; 2011 Oct; 5():172. PubMed ID: 22024446 [TBL] [Abstract][Full Text] [Related]
5. Identifying emerging phenomenon in long temporal phenotyping experiments. Peng J; Lu J; Hoh D; Dina AS; Shang X; Kramer DM; Chen J Bioinformatics; 2020 Jan; 36(2):568-577. PubMed ID: 31304958 [TBL] [Abstract][Full Text] [Related]
6. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli. Hädicke O; von Kamp A; Aydogan T; Klamt S PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096 [TBL] [Abstract][Full Text] [Related]
7. Identification of regulatory modules in genome scale transcription regulatory networks. Song Q; Grene R; Heath LS; Li S BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163 [TBL] [Abstract][Full Text] [Related]
8. A structural approach for finding functional modules from large biological networks. Mete M; Tang F; Xu X; Yuruk N BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S19. PubMed ID: 18793464 [TBL] [Abstract][Full Text] [Related]
9. NCMine: Core-peripheral based functional module detection using near-clique mining. Tadaka S; Kinoshita K Bioinformatics; 2016 Nov; 32(22):3454-3460. PubMed ID: 27466623 [TBL] [Abstract][Full Text] [Related]
10. Fast and accurate method for identifying high-quality protein-interaction modules by clique merging and its application to yeast. Zhang C; Liu S; Zhou Y J Proteome Res; 2006 Apr; 5(4):801-7. PubMed ID: 16602686 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic-overlapping co-expression module detection with application to Alzheimer's Disease. Manners HN; Roy S; Kalita JK Comput Biol Chem; 2018 Dec; 77():373-389. PubMed ID: 30466046 [TBL] [Abstract][Full Text] [Related]
13. Adapting Community Detection Algorithms for Disease Module Identification in Heterogeneous Biological Networks. Tripathi B; Parthasarathy S; Sinha H; Raman K; Ravindran B Front Genet; 2019; 10():164. PubMed ID: 30918511 [TBL] [Abstract][Full Text] [Related]
14. Functional Module Analysis for Gene Coexpression Networks with Network Integration. Zhang S; Zhao H; Ng MK IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1146-60. PubMed ID: 26451826 [TBL] [Abstract][Full Text] [Related]
15. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach. Li J; Zhao PX Front Plant Sci; 2016; 7():903. PubMed ID: 27446133 [TBL] [Abstract][Full Text] [Related]
16. Microbial genotype-phenotype mapping by class association rule mining. Tamura M; D'haeseleer P Bioinformatics; 2008 Jul; 24(13):1523-9. PubMed ID: 18467347 [TBL] [Abstract][Full Text] [Related]
17. A network-based machine-learning framework to identify both functional modules and disease genes. Yang K; Lu K; Wu Y; Yu J; Liu B; Zhao Y; Chen J; Zhou X Hum Genet; 2021 Jun; 140(6):897-913. PubMed ID: 33409574 [TBL] [Abstract][Full Text] [Related]