BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 22078813)

  • 1. The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells.
    Wu J; Du Y; Watkins SC; Funderburgh JL; Wagner WR
    Biomaterials; 2012 Feb; 33(5):1343-52. PubMed ID: 22078813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates.
    Wu J; Du Y; Mann MM; Yang E; Funderburgh JL; Wagner WR
    Tissue Eng Part A; 2013 Sep; 19(17-18):2063-75. PubMed ID: 23557404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue.
    Wu J; Du Y; Mann MM; Funderburgh JL; Wagner WR
    Exp Eye Res; 2014 Mar; 120():71-81. PubMed ID: 24440595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.
    Karamichos D; Funderburgh ML; Hutcheon AE; Zieske JD; Du Y; Wu J; Funderburgh JL
    PLoS One; 2014; 9(1):e86260. PubMed ID: 24465995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.
    Mukhey D; Phillips JB; Daniels JT; Kureshi AK
    Acta Biomater; 2018 Feb; 67():229-237. PubMed ID: 29208552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold-free tissue engineering of functional corneal stromal tissue.
    Syed-Picard FN; Du Y; Hertsenberg AJ; Palchesko R; Funderburgh ML; Feinberg AW; Funderburgh JL
    J Tissue Eng Regen Med; 2018 Jan; 12(1):59-69. PubMed ID: 27863068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture.
    Ghezzi CE; Marelli B; Omenetto FG; Funderburgh JL; Kaplan DL
    PLoS One; 2017; 12(1):e0169504. PubMed ID: 28099503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering of corneal stroma via melt electrowriting.
    Gao Q; Xie J; Salero E; Nuñez Del Prado Z; Hutmacher DW; Ye J; De Juan-Pardo EM; Sabater AL; Perez VL
    J Tissue Eng Regen Med; 2021 Oct; 15(10):841-851. PubMed ID: 34327854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes.
    Barbaro V; Ferrari S; Fasolo A; Ponzin D; Di Iorio E
    Mol Vis; 2009 Oct; 15():2084-93. PubMed ID: 19862337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells.
    Gosselin EA; Torregrosa T; Ghezzi CE; Mendelsohn AC; Gomes R; Funderburgh JL; Kaplan DL
    J Tissue Eng Regen Med; 2018 Jan; 12(1):285-295. PubMed ID: 28600807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering.
    Kim H; Jang J; Park J; Lee KP; Lee S; Lee DM; Kim KH; Kim HK; Cho DW
    Biofabrication; 2019 May; 11(3):035017. PubMed ID: 30995622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering.
    Gil ES; Mandal BB; Park SH; Marchant JK; Omenetto FG; Kaplan DL
    Biomaterials; 2010 Dec; 31(34):8953-63. PubMed ID: 20801503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model.
    Chen J; Zhang W; Kelk P; Backman LJ; Danielson P
    Stem Cell Res Ther; 2017 Nov; 8(1):260. PubMed ID: 29132420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants.
    Tidu A; Schanne-Klein MC; Borderie VM
    Exp Eye Res; 2020 Nov; 200():108256. PubMed ID: 32971095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma.
    Du Y; Sundarraj N; Funderburgh ML; Harvey SA; Birk DE; Funderburgh JL
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5038-45. PubMed ID: 17962455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of corneal stroma extracellular matrix assembly.
    Chen S; Mienaltowski MJ; Birk DE
    Exp Eye Res; 2015 Apr; 133():69-80. PubMed ID: 25819456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal stromal bioequivalents secreted on patterned silk substrates.
    Wu J; Rnjak-Kovacina J; Du Y; Funderburgh ML; Kaplan DL; Funderburgh JL
    Biomaterials; 2014 Apr; 35(12):3744-55. PubMed ID: 24503156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Tissue-Engineered Corneal Stromal Equivalent Based on Amniotic Membrane and Keratocytes.
    Che X; Wu H; Jia C; Sun H; Ou S; Wang J; Jeyalatha MV; He X; Yu J; Zuo C; Liu Z; Li W
    Invest Ophthalmol Vis Sci; 2019 Feb; 60(2):517-527. PubMed ID: 30707753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic corneal stroma using electro-compacted collagen.
    Chen Z; Liu X; You J; Song Y; Tomaskovic-Crook E; Sutton G; Crook JM; Wallace GG
    Acta Biomater; 2020 Sep; 113():360-371. PubMed ID: 32652228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular matrix production by embryonic epithelium cultured on type IV collagen. Deposition of a primary corneal stroma-like structure containing large irregular type I fibrils without type II collagen.
    Ruggiero F; Barge A; Coll JL; Garrone R
    Cell Differ Dev; 1990 Feb; 29(2):95-104. PubMed ID: 2182182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.