These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Conformational studies of cyclic enkephalin analogues with L- or D-proline in position 3. Malicka J; Groth M; Czaplewski C; Wiczk W; Liwo A Biopolymers; 2002 Apr; 63(4):217-31. PubMed ID: 11807749 [TBL] [Abstract][Full Text] [Related]
23. The use of the AMBER force field in conformational analysis of carbohydrate molecules: determination of the solution conformation of methyl alpha-lactoside by NMR spectroscopy, assisted by molecular mechanics and dynamics calculations. Asensio JL; Jimenez-Barbero J Biopolymers; 1995 Jan; 35(1):55-73. PubMed ID: 7696556 [TBL] [Abstract][Full Text] [Related]
24. Application of NMR, molecular simulation, and hydrodynamics to conformational analysis of trisaccharides. Dixon AM; Venable R; Widmalm G; Bull TE; Pastor RW Biopolymers; 2003 Aug; 69(4):448-60. PubMed ID: 12879491 [TBL] [Abstract][Full Text] [Related]
25. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9. Roterman IK; Gibson KD; Scheraga HA J Biomol Struct Dyn; 1989 Dec; 7(3):391-419. PubMed ID: 2627293 [TBL] [Abstract][Full Text] [Related]
26. Influence of side chain conformations on local conformational features of amino acids and implication for force field development. Jiang F; Han W; Wu YD J Phys Chem B; 2010 May; 114(17):5840-50. PubMed ID: 20392111 [TBL] [Abstract][Full Text] [Related]
27. Application of torsion angle molecular dynamics for efficient sampling of protein conformations. Chen J; Im W; Brooks CL J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655 [TBL] [Abstract][Full Text] [Related]
28. Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin. Huang JR; Grzesiek S J Am Chem Soc; 2010 Jan; 132(2):694-705. PubMed ID: 20000836 [TBL] [Abstract][Full Text] [Related]
29. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1. Dolenc J; Missimer JH; Steinmetz MO; van Gunsteren WF J Biomol NMR; 2010 Jul; 47(3):221-35. PubMed ID: 20524044 [TBL] [Abstract][Full Text] [Related]
30. Influence of sample pH on the conformational backbone dynamics of a pseudotripeptide (H-Tyr-Tic psi [CH2-NH]Phe-OH) incorporating a reduced peptide bond: an NMR investigation. Carpenter KA; Wilkes BC; Schiller PW Biopolymers; 1995 Dec; 36(6):735-49. PubMed ID: 8555421 [TBL] [Abstract][Full Text] [Related]
31. Conformational changes of trialanine induced by direct interactions between alanine residues and alcohols in binary mixtures of water with glycerol and ethanol. Toal S; Amidi O; Schweitzer-Stenner R J Am Chem Soc; 2011 Aug; 133(32):12728-39. PubMed ID: 21728315 [TBL] [Abstract][Full Text] [Related]
32. Conformational solution studies of neuropeptide gamma using CD and NMR spectroscopy. Rodziewicz-Motowidło S; Brzozowskl K; Legowska A; Liwo A; Silbering J; Smoluch M; Rolka K J Pept Sci; 2002 May; 8(5):211-26. PubMed ID: 12043996 [TBL] [Abstract][Full Text] [Related]
33. Conformational dynamics of HIV-1 protease: a comparative molecular dynamics simulation study with multiple amber force fields. Meher BR; Kumar MV; Sharma S; Bandyopadhyay P J Bioinform Comput Biol; 2012 Dec; 10(6):1250018. PubMed ID: 22845837 [TBL] [Abstract][Full Text] [Related]
34. NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer. Bocian W; Borowicz P; Mikołajczyk J; Sitkowski J; Tarnowska A; Bednarek E; Głabski T; Tejchman-Małecka B; Bogiel M; Kozerski L Biopolymers; 2008 Oct; 89(10):820-30. PubMed ID: 18491415 [TBL] [Abstract][Full Text] [Related]
35. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature. Banerjee R; Chattopadhyay S; Basu G Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603 [TBL] [Abstract][Full Text] [Related]
36. Molecular dynamics with weighted time-averaged restraints for a DNA octamer. Dynamic interpretation of nuclear magnetic resonance data. Schmitz U; Ulyanov NB; Kumar A; James TL J Mol Biol; 1993 Nov; 234(2):373-89. PubMed ID: 8230221 [TBL] [Abstract][Full Text] [Related]
37. Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of pH. Ripoll DR; Vila JA; Scheraga HA J Mol Biol; 2004 Jun; 339(4):915-25. PubMed ID: 15165859 [TBL] [Abstract][Full Text] [Related]
38. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. Clore GM; Robien MA; Gronenborn AM J Mol Biol; 1993 May; 231(1):82-102. PubMed ID: 8496968 [TBL] [Abstract][Full Text] [Related]
39. Assessing the Current State of Amber Force Field Modifications for DNA. Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587 [TBL] [Abstract][Full Text] [Related]
40. Discrete three-dimensional representation of macromolecular motion from eNOE-based ensemble calculation. Vögeli B; Orts J; Strotz D; Güntert P; Riek R Chimia (Aarau); 2012; 66(10):787-90. PubMed ID: 23146266 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]