BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22079522)

  • 1. Dynamic control of gold nanoparticle morphology in a microchannel flow reactor by glucose reduction in aqueous sodium hydroxide solution.
    Ishizaka T; Ishigaki A; Kawanami H; Suzuki A; Suzuki TM
    J Colloid Interface Sci; 2012 Feb; 367(1):135-8. PubMed ID: 22079522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH.
    Chandran PR; Naseer M; Udupa N; Sandhyarani N
    Nanotechnology; 2012 Jan; 23(1):015602. PubMed ID: 22156111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology-selective synthesis of polyhedral gold nanoparticles: what factors control the size and morphology of gold nanoparticles in a wet-chemical process.
    Lee JH; Kamada K; Enomoto N; Hojo J
    J Colloid Interface Sci; 2007 Dec; 316(2):887-92. PubMed ID: 17897663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Procedures for the synthesis and capping of metal nanoparticles.
    Gutiérrez-Wing C; Velázquez-Salazar JJ; José-Yacamán M
    Methods Mol Biol; 2012; 906():3-19. PubMed ID: 22791420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles.
    Yang W; Gooding JJ; He Z; Li Q; Chen G
    J Nanosci Nanotechnol; 2007 Feb; 7(2):712-6. PubMed ID: 17450820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites.
    Shervani Z; Yamamoto Y
    Carbohydr Res; 2011 Apr; 346(5):651-8. PubMed ID: 21349499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.
    Okitsu K; Sharyo K; Nishimura R
    Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nucleation kinetics of ZnO nanoparticles from ZnCl2 in ethanol solutions.
    Vega-Poot AG; Rodríguez-Gattorno G; Soberanis-Domínguez OE; Patiño-Díaz RT; Espinosa-Pesqueira M; Oskam G
    Nanoscale; 2010 Dec; 2(12):2710-7. PubMed ID: 20877855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous palladium-the surface electrochemistry of palladium in aqueous sodium hydroxide and the cathodic reduction of nitrite.
    Denuault G; Milhano C; Pletcher D
    Phys Chem Chem Phys; 2005 Oct; 7(20):3545-51. PubMed ID: 16294229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous pathways for the formation of zinc oxide nanoparticles.
    Moezzi A; Cortie M; McDonagh A
    Dalton Trans; 2011 May; 40(18):4871-8. PubMed ID: 21412544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable aqueous nanoparticle film assemblies with covalent and charged polymer linking networks.
    Russell LE; Galyean AA; Notte SM; Leopold MC
    Langmuir; 2007 Jul; 23(14):7466-71. PubMed ID: 17559246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of gold nanoparticles by surfactant-promoted reductive reaction without extra reducing agent.
    Tang J; Huang J; Man SQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():349-55. PubMed ID: 23261633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave activation of the electro-oxidation of glucose in alkaline media.
    Ghanem MA; Compton RG; Coles BA; Canals A; Vuorema A; John P; Marken F
    Phys Chem Chem Phys; 2005 Oct; 7(20):3552-9. PubMed ID: 16294230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent.
    Jin M; He G; Zhang H; Zeng J; Xie Z; Xia Y
    Angew Chem Int Ed Engl; 2011 Nov; 50(45):10560-4. PubMed ID: 21928444
    [No Abstract]   [Full Text] [Related]  

  • 15. Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices.
    Baker CO; Shedd B; Tseng RJ; Martinez-Morales AA; Ozkan CS; Ozkan M; Yang Y; Kaner RB
    ACS Nano; 2011 May; 5(5):3469-74. PubMed ID: 21469712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of uniform gold nanoparticles using non-pathogenic bio-control agent: evolution of morphology from nano-spheres to triangular nanoprisms.
    Mukherjee P; Roy M; Mandal BP; Choudhury S; Tewari R; Tyagi AK; Kale SP
    J Colloid Interface Sci; 2012 Feb; 367(1):148-52. PubMed ID: 22047921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the synthesis of nanostructured Tb3+-doped Gd2O3 by in-situ luminescence following up.
    Ou M; Mutelet B; Martini M; Bazzi R; Roux S; Ledoux G; Tillement O; Perriat P
    J Colloid Interface Sci; 2009 May; 333(2):684-9. PubMed ID: 19251266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete oxidation of ethylene over supported gold nanoparticle catalysts.
    Ahn HG; Choi BM; Lee DJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3599-603. PubMed ID: 17252819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architectures based on the use of gold nanoparticles and ruthenium complexes as a new route to improve genosensor sensitivity.
    García T; Casero E; Revenga-Parra M; Martín-Benito J; Pariente F; Vázquez L; Lorenzo E
    Biosens Bioelectron; 2008 Oct; 24(2):184-90. PubMed ID: 18485689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ monitoring of Pt nanoparticle formation in ethylene glycol solution by SAXS-influence of the NaOH to Pt ratio.
    Steinfeldt N
    Langmuir; 2012 Sep; 28(36):13072-9. PubMed ID: 22891651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.