BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22079578)

  • 1. Temporal and spatial regulation of interneuron distribution in the developing cerebral cortex--an in vitro study.
    Lourenço MR; Garcez PP; Lent R; Uziel D
    Neuroscience; 2012 Jan; 201():357-65. PubMed ID: 22079578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential gene expression in migrating cortical interneurons during mouse forebrain development.
    Faux C; Rakic S; Andrews W; Yanagawa Y; Obata K; Parnavelas JG
    J Comp Neurol; 2010 Apr; 518(8):1232-48. PubMed ID: 20151419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence.
    Steinecke A; Gampe C; Zimmer G; Rudolph J; Bolz J
    Development; 2014 Jan; 141(2):460-71. PubMed ID: 24381199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondroitin sulfate acts in concert with semaphorin 3A to guide tangential migration of cortical interneurons in the ventral telencephalon.
    Zimmer G; Schanuel SM; Bürger S; Weth F; Steinecke A; Bolz J; Lent R
    Cereb Cortex; 2010 Oct; 20(10):2411-22. PubMed ID: 20071458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.
    Rubin AN; Alfonsi F; Humphreys MP; Choi CK; Rocha SF; Kessaris N
    J Neurosci; 2010 Sep; 30(36):12050-62. PubMed ID: 20826668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons.
    Zimmer G; Garcez P; Rudolph J; Niehage R; Weth F; Lent R; Bolz J
    Eur J Neurosci; 2008 Jul; 28(1):62-73. PubMed ID: 18662335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical interneurons and their origins.
    Wonders C; Anderson SA
    Neuroscientist; 2005 Jun; 11(3):199-205. PubMed ID: 15911869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventricle-directed migration in the developing cerebral cortex.
    Nadarajah B; Alifragis P; Wong RO; Parnavelas JG
    Nat Neurosci; 2002 Mar; 5(3):218-24. PubMed ID: 11850632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon.
    Xu Q; Wonders CP; Anderson SA
    Development; 2005 Nov; 132(22):4987-98. PubMed ID: 16221724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex.
    Tanaka DH; Maekawa K; Yanagawa Y; Obata K; Murakami F
    Development; 2006 Jun; 133(11):2167-76. PubMed ID: 16672340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NKX2.1 specifies cortical interneuron fate by activating Lhx6.
    Du T; Xu Q; Ocbina PJ; Anderson SA
    Development; 2008 Apr; 135(8):1559-67. PubMed ID: 18339674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspectives on the developmental origins of cortical interneuron diversity.
    Fishell G
    Novartis Found Symp; 2007; 288():21-35; discussion 35-44, 96-8. PubMed ID: 18494250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early regionalisation of the neocortex and the medial ganglionic eminence.
    Bellion A; Métin C
    Brain Res Bull; 2005 Sep; 66(4-6):402-9. PubMed ID: 16144622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors.
    Miyoshi G; Butt SJ; Takebayashi H; Fishell G
    J Neurosci; 2007 Jul; 27(29):7786-98. PubMed ID: 17634372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons.
    Cuevas E; Ausó E; Telefont M; Morreale de Escobar G; Sotelo C; Berbel P
    Eur J Neurosci; 2005 Aug; 22(3):541-51. PubMed ID: 16101736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential origin and layer destination of GAD65-GFP cortical interneurons.
    López-Bendito G; Sturgess K; Erdélyi F; Szabó G; Molnár Z; Paulsen O
    Cereb Cortex; 2004 Oct; 14(10):1122-33. PubMed ID: 15115742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcortical origins of human and monkey neocortical interneurons.
    Ma T; Wang C; Wang L; Zhou X; Tian M; Zhang Q; Zhang Y; Li J; Liu Z; Cai Y; Liu F; You Y; Chen C; Campbell K; Song H; Ma L; Rubenstein JL; Yang Z
    Nat Neurosci; 2013 Nov; 16(11):1588-97. PubMed ID: 24097041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracortical multidirectional migration of cortical interneurons.
    Murakami F; Tanaka D; Yanagida M; Yamazaki E
    Novartis Found Symp; 2007; 288():116-25; discussion 125-9, 276-81. PubMed ID: 18494255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins.
    Tanaka D; Nakaya Y; Yanagawa Y; Obata K; Murakami F
    Development; 2003 Dec; 130(23):5803-13. PubMed ID: 14534141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Birth-date-dependent segregation of the mouse cerebral cortical neurons in reaggregation cultures.
    Ajioka I; Nakajima K
    Eur J Neurosci; 2005 Jul; 22(2):331-42. PubMed ID: 16045486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.