BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22079578)

  • 21. BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization.
    Alcántara S; Pozas E; Ibañez CF; Soriano E
    Cereb Cortex; 2006 Apr; 16(4):487-99. PubMed ID: 16000651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical cultures.
    Trinh HH; Reid J; Shin E; Liapi A; Parnavelas JG; Nadarajah B
    Eur J Neurosci; 2006 Dec; 24(11):2967-77. PubMed ID: 17156358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area.
    Gelman D; Griveau A; Dehorter N; Teissier A; Varela C; Pla R; Pierani A; Marín O
    J Neurosci; 2011 Nov; 31(46):16570-80. PubMed ID: 22090484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CXCR4 is required for proper regional and laminar distribution of cortical somatostatin-, calretinin-, and neuropeptide Y-expressing GABAergic interneurons.
    Tanaka DH; Mikami S; Nagasawa T; Miyazaki J; Nakajima K; Murakami F
    Cereb Cortex; 2010 Dec; 20(12):2810-7. PubMed ID: 20200107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons.
    Ghanem N; Yu M; Long J; Hatch G; Rubenstein JL; Ekker M
    J Neurosci; 2007 May; 27(19):5012-22. PubMed ID: 17494687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations.
    Nery S; Fishell G; Corbin JG
    Nat Neurosci; 2002 Dec; 5(12):1279-87. PubMed ID: 12411960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex.
    Crandall JE; Goodman T; McCarthy DM; Duester G; Bhide PG; Dräger UC; McCaffery P
    J Neurochem; 2011 Nov; 119(4):723-35. PubMed ID: 21895658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell and molecular mechanisms involved in the migration of cortical interneurons.
    Métin C; Baudoin JP; Rakić S; Parnavelas JG
    Eur J Neurosci; 2006 Feb; 23(4):894-900. PubMed ID: 16519654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas).
    Cobos I; Puelles L; Martínez S
    Dev Biol; 2001 Nov; 239(1):30-45. PubMed ID: 11784017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New pool of cortical interneuron precursors in the early postnatal dorsal white matter.
    Riccio O; Murthy S; Szabo G; Vutskits L; Kiss JZ; Vitalis T; Lebrand C; Dayer AG
    Cereb Cortex; 2012 Jan; 22(1):86-98. PubMed ID: 21616983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex.
    Myers AK; Meechan DW; Adney DR; Tucker ES
    J Neurosci; 2014 Jun; 34(23):7787-801. PubMed ID: 24899703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsic and extrinsic mechanisms control the termination of cortical interneuron migration.
    Inamura N; Kimura T; Tada S; Kurahashi T; Yanagida M; Yanagawa Y; Ikenaka K; Murakami F
    J Neurosci; 2012 Apr; 32(17):6032-42. PubMed ID: 22539863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression in cortical interneuron precursors is prescient of their mature function.
    Batista-Brito R; Machold R; Klein C; Fishell G
    Cereb Cortex; 2008 Oct; 18(10):2306-17. PubMed ID: 18250082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The temporal and spatial origins of cortical interneurons predict their physiological subtype.
    Butt SJ; Fuccillo M; Nery S; Noctor S; Kriegstein A; Corbin JG; Fishell G
    Neuron; 2005 Nov; 48(4):591-604. PubMed ID: 16301176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon.
    Xu Q; Tam M; Anderson SA
    J Comp Neurol; 2008 Jan; 506(1):16-29. PubMed ID: 17990269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism.
    Gulacsi A; Anderson SA
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i89-95. PubMed ID: 16766713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subpallial origin of part of the calbindin-positive neurons of the claustral complex and piriform cortex.
    Legaz I; García-López M; Medina L
    Brain Res Bull; 2005 Sep; 66(4-6):470-4. PubMed ID: 16144634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Netrin1 exerts a chemorepulsive effect on migrating cerebellar interneurons in a Dcc-independent way.
    Guijarro P; Simó S; Pascual M; Abasolo I; Del Río JA; Soriano E
    Mol Cell Neurosci; 2006 Dec; 33(4):389-400. PubMed ID: 17029983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells.
    Willaime-Morawek S; Seaberg RM; Batista C; Labbé E; Attisano L; Gorski JA; Jones KR; Kam A; Morshead CM; van der Kooy D
    J Cell Biol; 2006 Oct; 175(1):159-68. PubMed ID: 17030986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lineage-specific laminar organization of cortical GABAergic interneurons.
    Ciceri G; Dehorter N; Sols I; Huang ZJ; Maravall M; Marín O
    Nat Neurosci; 2013 Sep; 16(9):1199-210. PubMed ID: 23933753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.