BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22079755)

  • 1. Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems.
    Wan C; Yuan T; Li L; Kandhi V; Cech NB; Xie M; Seeram NP
    Bioorg Med Chem Lett; 2012 Jan; 22(1):597-600. PubMed ID: 22079755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum).
    González-Sarrías A; Yuan T; Seeram NP
    Food Chem Toxicol; 2012 May; 50(5):1369-76. PubMed ID: 22387705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential.
    Ma H; Liu W; Frost L; Kirschenbaum LJ; Dain JA; Seeram NP
    Food Funct; 2016 May; 7(5):2213-22. PubMed ID: 27101975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New phenylpropanoids and in vitro α-glucosidase inhibitors from Balanophora japonica.
    Zhou T; Zhang XH; Zhang SW; Liu SS; Xuan LJ
    Planta Med; 2011 Mar; 77(5):477-81. PubMed ID: 20979022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Gallotannin and other Phytochemicals from Sycamore Maple (Acer pseudoplatanus) Leaves.
    Zhang L; Tu ZC; Yuan T; Ma H; Niesen DB; Wang H; Seeram NP
    Nat Prod Commun; 2015 Nov; 10(11):1977-80. PubMed ID: 26749841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells.
    Ma H; Xu J; DaSilva NA; Wang L; Wei Z; Guo L; Johnson SL; Lu W; Xu J; Gu Q; Seeram NP
    Arch Dermatol Res; 2017 May; 309(4):265-274. PubMed ID: 28283753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Evaluation of Gallotannin Derivatives as Antioxidants and α-Glucosidase Inhibitors.
    Machida S; Sugaya M; Saito H; Uchiyama T
    Chem Pharm Bull (Tokyo); 2021; 69(12):1209-1212. PubMed ID: 34853289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red Maple (Acer rubrum) Aerial Parts as a Source of Bioactive Phenolics.
    Zhang Y; Ma H; Yuan T; Seeram NP
    Nat Prod Commun; 2015 Aug; 10(8):1409-12. PubMed ID: 26434129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pycnalin, a new α-glucosidase inhibitor from Acer pycnanthum.
    Ogawa A; Miyamae Y; Honma A; Koyama T; Yazawa K; Shigemori H
    Chem Pharm Bull (Tokyo); 2011; 59(5):672-5. PubMed ID: 21532209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Glucosidase inhibitory hydrolyzable tannins from Eugenia jambolana seeds.
    Omar R; Li L; Yuan T; Seeram NP
    J Nat Prod; 2012 Aug; 75(8):1505-9. PubMed ID: 22867049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Alpha-glucosidase inhibitors from Luculia pinciana].
    Kang W; Zhang L; Song Y
    Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(4):406-9. PubMed ID: 19459300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive Glucitol-Core Containing Gallotannins and other Phytochemicals from Silver Maple (Acer saccharinum) Leaves.
    Muhsinah AB; Ma H; Dasilva NA; Yuan T; Seeram NP
    Nat Prod Commun; 2017 Jan; 12(1):83-84. PubMed ID: 30549831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-hyperglycaemic effects of the Japanese red maple Acer pycnanthum and its constituents the ginnalins B and C.
    Honma A; Koyama T; Yazawa K
    J Enzyme Inhib Med Chem; 2011 Apr; 26(2):176-80. PubMed ID: 20560858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1,5-Anhydro-d-glucitol derivative and galloylated flavonoids isolated from the leaves of Acer ginnala Maxim. as dual inhibitors of PTP1B and α-glucosidase enzymes: In vitro and in silico studies.
    Le TT; Ha MT; Cao TQ; Kim JA; Choi JS; Min BS
    Phytochemistry; 2023 Sep; 213():113769. PubMed ID: 37343738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure Activity Related, Mechanistic, and Modeling Studies of Gallotannins containing a Glucitol-Core and
    Ma H; Wang L; Niesen DB; Cai A; Cho BP; Tan W; Gu Q; Xu J; Seeram NP
    RSC Adv; 2015 Jan; 5(130):107904-107915. PubMed ID: 26989482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New phenolics from the flowers of Punica granatum and their in vitro α-glucosidase inhibitory activities.
    Yuan T; Wan C; Ma H; Seeram NP
    Planta Med; 2013 Nov; 79(17):1674-9. PubMed ID: 24108434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Glucosidase inhibitory triterpenoids from the stem barks of Uncaria laevigata.
    Wang ZW; Wang JS; Luo J; Kong LY
    Fitoterapia; 2013 Oct; 90():30-7. PubMed ID: 23856092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor.
    Xie W; Tanabe G; Matsuoka K; Amer MF; Minematsu T; Wu X; Yoshikawa M; Muraoka O
    Bioorg Med Chem; 2011 Apr; 19(7):2252-62. PubMed ID: 21420866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of polyhydroxybenzophenones as α-glucosidase inhibitors.
    Hu X; Xiao Y; Wu J; Ma L
    Arch Pharm (Weinheim); 2011 Feb; 344(2):71-7. PubMed ID: 21290422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Alpha-glucosidase inhibitors from Rubia cordifolia].
    Kang W; Zhang L; Song Y
    Zhongguo Zhong Yao Za Zhi; 2009 May; 34(9):1104-7. PubMed ID: 19685744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.