These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22079868)

  • 1. A rapid, targeted, neuron-selective, in vivo knockdown following a single intracerebroventricular injection of a novel chemically modified siRNA in the adult rat brain.
    Nakajima H; Kubo T; Semi Y; Itakura M; Kuwamura M; Izawa T; Azuma YT; Takeuchi T
    J Biotechnol; 2012 Jan; 157(2):326-33. PubMed ID: 22079868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain.
    Kim ID; Lim CM; Kim JB; Nam HY; Nam K; Kim SW; Park JS; Lee JK
    J Control Release; 2010 Mar; 142(3):422-30. PubMed ID: 19944723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurobasal media facilitates increased specificity of siRNA-mediated knockdown in primary cerebellar cultures.
    Gustafsson JR; Katsioudi G; Issazadeh-Navikas S; Kornum BR
    J Neurosci Methods; 2016 Dec; 274():116-124. PubMed ID: 27717866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolabeled uracil derivative as a novel SPECT probe for thymidine phosphorylase: suppressed accumulation into tumor cells by target gene knockdown.
    Li H; Zhao S; Jin Y; Nishijima K; Akizawa H; Ohkura K; Tamaki N; Kuge Y
    Nucl Med Commun; 2011 Dec; 32(12):1211-5. PubMed ID: 21934548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene knockdown of the N-methyl-D-aspartate receptor NR1 subunit with subcutaneous small interfering RNA reduces inflammation-induced nociception in rats.
    Tan PH; Chia YY; Chow LH; Chen JJ; Yang LC; Hung KC; Chen HS; Kuo CH
    Anesthesiology; 2010 Jun; 112(6):1482-93. PubMed ID: 20463582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted knockdown of canine KIT (stem cell factor receptor) using RNA interference.
    Elders RC; Holder A; Baines SJ; Argyle D; Catchpole B
    Vet Immunol Immunopathol; 2011 May; 141(1-2):151-6. PubMed ID: 21397955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo.
    Höbel S; Aigner A
    Methods Mol Biol; 2010; 623():283-97. PubMed ID: 20217558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific knock-down of GAD67 in the striatum using naked small interfering RNAs.
    Manrique C; Compan V; Rosselet C; Duflo SG
    J Biotechnol; 2009 Jul; 142(3-4):185-92. PubMed ID: 19497341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfection of "naked" siRNA results in endosomal uptake and metabolic impairment in cultured neurons.
    Lingor P; Michel U; Schöll U; Bähr M; Kügler S
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1126-33. PubMed ID: 14985130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides.
    Senn C; Hangartner C; Moes S; Guerini D; Hofbauer KG
    Eur J Pharmacol; 2005 Oct; 522(1-3):30-7. PubMed ID: 16213482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes.
    Hossain S; Stanislaus A; Chua MJ; Tada S; Tagawa Y; Chowdhury EH; Akaike T
    J Control Release; 2010 Oct; 147(1):101-8. PubMed ID: 20620182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple, noninvasive and efficient method for transdermal delivery of siRNA.
    Lin CM; Huang K; Zeng Y; Chen XC; Wang S; Li Y
    Arch Dermatol Res; 2012 Mar; 304(2):139-44. PubMed ID: 22009459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a novel nonviral gene silencing system that is effective both in vitro and in vivo by using a star-shaped block copolymer (star vector).
    Mori T; Ishikawa A; Nemoto Y; Kambe N; Sakamoto M; Nakayama Y
    Bioconjug Chem; 2009 Jun; 20(6):1262-9. PubMed ID: 19456093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic delivery protocols.
    Rychahou PG; Evers BM
    Methods Mol Biol; 2010; 623():189-95. PubMed ID: 20217552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA.
    Amarzguioui M; Lundberg P; Cantin E; Hagstrom J; Behlke MA; Rossi JJ
    Nat Protoc; 2006; 1(2):508-17. PubMed ID: 17406276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles.
    Wong Y; Markham K; Xu ZP; Chen M; Max Lu GQ; Bartlett PF; Cooper HM
    Biomaterials; 2010 Nov; 31(33):8770-9. PubMed ID: 20709387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications.
    Rujitanaroj PO; Wang YC; Wang J; Chew SY
    Biomaterials; 2011 Sep; 32(25):5915-23. PubMed ID: 21596430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein.
    Phadke AP; Jay CM; Wang Z; Chen S; Liu S; Haddock C; Kumar P; Pappen BO; Rao DD; Templeton NS; Daniels EQ; Webb C; Monsma D; Scott S; Dylewski D; Frieboes HB; Brunicardi FC; Senzer N; Maples PB; Nemunaitis J; Tong AW
    DNA Cell Biol; 2011 Sep; 30(9):715-26. PubMed ID: 21612405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in synthetic siRNA delivery.
    Manjunath N; Dykxhoorn DM
    Discov Med; 2010 May; 9(48):418-30. PubMed ID: 20515610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing.
    Bartlett DW; Davis ME
    Biotechnol Bioeng; 2007 Jul; 97(4):909-21. PubMed ID: 17154307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.