These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor. Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607 [TBL] [Abstract][Full Text] [Related]
45. The insecticidal activity of Cyanobacteria against four insects, two of medical importance and two agricultural pests with reference to the action on albino mice. Nassar MM; Hafez ST; Nagaty IM; Khalaf SA J Egypt Soc Parasitol; 1999; 29(3):939-49. PubMed ID: 12561932 [TBL] [Abstract][Full Text] [Related]
46. Evaluation of Bacillus subtilis SPB1 biosurfactant effects on hyperglycemia, angiotensin I-converting enzyme (ACE) activity and kidney function in rats fed on high-fat-high-fructose diet. Zouari R; Hamden K; El Feki A; Chaabouni K; Makni-Ayadi F; Sallemi F; Ellouze-Chaabouni S; Ghribi-Aydi D Arch Physiol Biochem; 2017 May; 123(2):112-120. PubMed ID: 28019119 [TBL] [Abstract][Full Text] [Related]
47. Histopathological and combinatorial effects of the metalloprotease InhA1 and Cry proteins of Bacillus thuringiensis against Spodoptera littoralis. Dammak I; Dammak M; Tounsi S Int J Biol Macromol; 2015 Nov; 81():759-62. PubMed ID: 26358555 [TBL] [Abstract][Full Text] [Related]
48. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Hernández-Martínez P; Ferré J; Escriche B J Invertebr Pathol; 2008 Mar; 97(3):245-50. PubMed ID: 18082763 [TBL] [Abstract][Full Text] [Related]
49. Toxicity of allyl esters in insect cell lines and in Spodoptera littoralis larvae. Giner M; Avilla J; Balcells M; Caccia S; Smagghe G Arch Insect Biochem Physiol; 2012 Jan; 79(1):18-30. PubMed ID: 23589218 [TBL] [Abstract][Full Text] [Related]
50. Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Sowjanya Sree K; Padmaja V; Murthy YL Pest Manag Sci; 2008 Feb; 64(2):119-25. PubMed ID: 17935266 [TBL] [Abstract][Full Text] [Related]
51. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda). Martins ES; Aguiar RW; Martins NF; Melatti VM; Falcão R; Gomes AC; Ribeiro BM; Monnerat RG J Appl Microbiol; 2008 May; 104(5):1363-71. PubMed ID: 18248369 [TBL] [Abstract][Full Text] [Related]
52. Surfactin: a novel mosquitocidal biosurfactant produced by Bacillus subtilis ssp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Geetha I; Manonmani AM Lett Appl Microbiol; 2010 Oct; 51(4):406-12. PubMed ID: 20796211 [TBL] [Abstract][Full Text] [Related]
53. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Porta H; Jiménez G; Cordoba E; León P; Soberón M; Bravo A Insect Biochem Mol Biol; 2011 Jul; 41(7):513-9. PubMed ID: 21621616 [TBL] [Abstract][Full Text] [Related]
54. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Bullangpoti V; Wajnberg E; Audant P; Feyereisen R Pest Manag Sci; 2012 Sep; 68(9):1255-64. PubMed ID: 22488906 [TBL] [Abstract][Full Text] [Related]
55. Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Lai T; Su J Pest Manag Sci; 2011 Nov; 67(11):1468-72. PubMed ID: 21594963 [TBL] [Abstract][Full Text] [Related]
56. [Identification and cloning of vip3A genes from isolates of Bacillus thuringiensis and their bioactivity analysis]. Shen J; Hou M; Guo W Wei Sheng Wu Xue Bao; 2009 Jan; 49(1):110-6. PubMed ID: 19388273 [TBL] [Abstract][Full Text] [Related]
57. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. Donovan WP; Donovan JC; Engleman JT J Invertebr Pathol; 2001 Jul; 78(1):45-51. PubMed ID: 11500093 [TBL] [Abstract][Full Text] [Related]
58. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Zhu C; Ruan L; Peng D; Yu Z; Sun M Lett Appl Microbiol; 2006 Feb; 42(2):109-14. PubMed ID: 16441373 [TBL] [Abstract][Full Text] [Related]
59. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. Gomis-Cebolla J; Ruiz de Escudero I; Vera-Velasco NM; Hernández-Martínez P; Hernández-Rodríguez CS; Ceballos T; Palma L; Escriche B; Caballero P; Ferré J J Invertebr Pathol; 2017 Jan; 142():60-67. PubMed ID: 27756652 [TBL] [Abstract][Full Text] [Related]
60. Heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata strain K122 and oral toxicity against the lepidoptera Ephestia kuehniella and Spodoptera littoralis. Jamoussi K; Sellami S; Abdelkefi-Mesrati L; Givaudan A; Jaoua S Mol Biotechnol; 2009 Oct; 43(2):97-103. PubMed ID: 19462262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]