BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22080955)

  • 1. Structure of full-length Drosophila cryptochrome.
    Zoltowski BD; Vaidya AT; Top D; Widom J; Young MW; Crane BR
    Nature; 2011 Nov; 480(7377):396-9. PubMed ID: 22080955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.
    Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G
    Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.
    Xing W; Busino L; Hinds TR; Marionni ST; Saifee NH; Bush MF; Pagano M; Zheng N
    Nature; 2013 Apr; 496(7443):64-8. PubMed ID: 23503662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function.
    Masiero A; Aufiero S; Minervini G; Moro S; Costa R; Tosatto SC
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1606-11. PubMed ID: 25026553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic determination of the functional state in photolyase and the implication for cryptochrome.
    Liu Z; Zhang M; Guo X; Tan C; Li J; Wang L; Sancar A; Zhong D
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12972-7. PubMed ID: 23882072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavin reduction activates Drosophila cryptochrome.
    Vaidya AT; Top D; Manahan CC; Tokuda JM; Zhang S; Pollack L; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20455-60. PubMed ID: 24297896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.
    Huang Y; Baxter R; Smith BS; Partch CL; Colbert CL; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17701-6. PubMed ID: 17101984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
    Ganguly A; Manahan CC; Top D; Yee EF; Lin C; Young MW; Thiel W; Crane BR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10073-8. PubMed ID: 27551082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
    Banerjee R; Schleicher E; Meier S; Viana RM; Pokorny R; Ahmad M; Bittl R; Batschauer A
    J Biol Chem; 2007 May; 282(20):14916-22. PubMed ID: 17355959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative properties and functions of type 2 and type 4 pigeon cryptochromes.
    Wang X; Jing C; Selby CP; Chiou YY; Yang Y; Wu W; Sancar A; Wang J
    Cell Mol Life Sci; 2018 Dec; 75(24):4629-4641. PubMed ID: 30264181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
    Brautigam CA; Smith BS; Ma Z; Palnitkar M; Tomchick DR; Machius M; Deisenhofer J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12142-7. PubMed ID: 15299148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential elements of radical pair magnetosensitivity in Drosophila.
    Bradlaugh AA; Fedele G; Munro AL; Hansen CN; Hares JM; Patel S; Kyriacou CP; Jones AR; Rosato E; Baines RA
    Nature; 2023 Mar; 615(7950):111-116. PubMed ID: 36813962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway.
    Fedele G; Green EW; Rosato E; Kyriacou CP
    Nat Commun; 2014 Jul; 5():4391. PubMed ID: 25019586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.
    Hitomi K; DiTacchio L; Arvai AS; Yamamoto J; Kim ST; Todo T; Tainer JA; Iwai S; Panda S; Getzoff ED
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6962-7. PubMed ID: 19359474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2.
    Ma L; Wang X; Guan Z; Wang L; Wang Y; Zheng L; Gong Z; Shen C; Wang J; Zhang D; Liu Z; Yin P
    Nat Struct Mol Biol; 2020 May; 27(5):472-479. PubMed ID: 32398826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
    Lin C; Top D; Manahan CC; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3822-3827. PubMed ID: 29581265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.