BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 22080976)

  • 21. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging.
    Slemmer JE; Shacka JJ; Sweeney MI; Weber JT
    Curr Med Chem; 2008; 15(4):404-14. PubMed ID: 18288995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of lipid peroxidation in CNS injury.
    Braughler JM; Hall ED
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S1-7. PubMed ID: 1588600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies.
    Juurlink BH; Paterson PG
    J Spinal Cord Med; 1998 Oct; 21(4):309-34. PubMed ID: 10096045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative Stress in Traumatic Brain Injury.
    Fesharaki-Zadeh A
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early metabolic reactivation versus antioxidant therapy after a traumatic spinal cord injury in adult rats.
    Torres S; Salgado-Ceballos H; Torres JL; Orozco-Suarez S; Díaz-Ruíz A; Martínez A; Rivera-Cruz M; Ríos C; Lara A; Collado C; Guizar-Sahagún G
    Neuropathology; 2010 Feb; 30(1):36-43. PubMed ID: 19563509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury.
    Zhang C; Zhai T; Zhu J; Wei D; Ren S; Yang Y; Gao F; Zhao L
    Neurochem Res; 2023 Dec; 48(12):3473-3484. PubMed ID: 37526867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular and subcellular oxidative stress parameters following severe spinal cord injury.
    Visavadiya NP; Patel SP; VanRooyen JL; Sullivan PG; Rabchevsky AG
    Redox Biol; 2016 Aug; 8():59-67. PubMed ID: 26760911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal characterization of mitochondrial bioenergetics after spinal cord injury.
    Sullivan PG; Krishnamurthy S; Patel SP; Pandya JD; Rabchevsky AG
    J Neurotrauma; 2007 Jun; 24(6):991-9. PubMed ID: 17600515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury.
    Xu W; Chi L; Xu R; Ke Y; Luo C; Cai J; Qiu M; Gozal D; Liu R
    Spinal Cord; 2005 Apr; 43(4):204-13. PubMed ID: 15520836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of lipid peroxidation in central nervous system trauma and ischemia.
    Hall ED
    J Neurol Sci; 1995 Dec; 134 Suppl():79-83. PubMed ID: 8847548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conotoxin MVIIA improves cell viability and antioxidant system after spinal cord injury in rats.
    Oliveira KM; Binda NS; Lavor MSL; Silva CMO; Rosado IR; Gabellini ELA; Da Silva JF; Oliveira CM; Melo MM; Gomez MV; Melo EG
    PLoS One; 2018; 13(10):e0204948. PubMed ID: 30286181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of peroxynitrite in secondary oxidative damage after spinal cord injury.
    Xiong Y; Rabchevsky AG; Hall ED
    J Neurochem; 2007 Feb; 100(3):639-49. PubMed ID: 17181549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of melatonin in traumatic brain injury and spinal cord injury.
    Naseem M; Parvez S
    ScientificWorldJournal; 2014; 2014():586270. PubMed ID: 25587567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting Mitochondrial Oxidative Stress: Potential Neuroprotective Therapy for Spinal Cord Injury.
    He Z; Zhang C; Liang JX; Zheng FF; Qi XY; Gao F
    J Integr Neurosci; 2023 Oct; 22(6):153. PubMed ID: 38176930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury.
    Carrico KM; Vaishnav R; Hall ED
    J Neurotrauma; 2009 Aug; 26(8):1369-78. PubMed ID: 19419247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Meloxicam exerts neuroprotection on spinal cord trauma in rats.
    Hakan T; Toklu HZ; Biber N; Celik H; Erzik C; Oğünç AV; Çetinel S; Sener G
    Int J Neurosci; 2011 Mar; 121(3):142-8. PubMed ID: 21138398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug development in spinal cord injury: what is the FDA looking for?
    Hall ED
    J Rehabil Res Dev; 2003; 40(4 Suppl 1):81-91. PubMed ID: 15077652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death?
    Sullivan PG; Rabchevsky AG; Waldmeier PC; Springer JE
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):231-9. PubMed ID: 15573402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NBQX treatment improves mitochondrial function and reduces oxidative events after spinal cord injury.
    Mu X; Azbill RD; Springer JE
    J Neurotrauma; 2002 Aug; 19(8):917-27. PubMed ID: 12225652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury.
    Hamann K; Shi R
    J Neurochem; 2009 Dec; 111(6):1348-56. PubMed ID: 19780896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.