These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22081018)

  • 1. Slowing and controlling the translocation of DNA in a solid-state nanopore.
    Luan B; Stolovitzky G; Martyna G
    Nanoscale; 2012 Feb; 4(4):1068-77. PubMed ID: 22081018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulation of a Single Carbon Chain through an Asymmetric Double-Layer Graphene Nanopore for Prolonging the Translocation Time.
    Zhou Y; Wang H
    ACS Omega; 2022 May; 7(19):16422-16429. PubMed ID: 35601336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores.
    Gu Z; He Z; Chen F; Meng L; Feng J; Zhou R
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32618-32624. PubMed ID: 35798544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution.
    Healy K; Ray V; Willis LJ; Peterman N; Bartel J; Drndić M
    Electrophoresis; 2012 Dec; 33(23):3488-96. PubMed ID: 23161707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing and controlling the motion of ssDNA in a solid-state nanopore.
    Luan B; Martyna G; Stolovitzky G
    Biophys J; 2011 Nov; 101(9):2214-22. PubMed ID: 22067161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing.
    Qiu H; Zhou W; Guo W
    ACS Nano; 2021 Dec; 15(12):18848-18864. PubMed ID: 34841865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Trapping of DNA in a Double-Nanopore System.
    Pud S; Chao SH; Belkin M; Verschueren D; Huijben T; van Engelenburg C; Dekker C; Aksimentiev A
    Nano Lett; 2016 Dec; 16(12):8021-8028. PubMed ID: 27960493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model.
    Wilson J; Sarthak K; Si W; Gao L; Aksimentiev A
    ACS Sens; 2019 Mar; 4(3):634-644. PubMed ID: 30821441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores.
    Ramachandran A; Guo Q; Iqbal SM; Liu Y
    J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slowing down DNA translocation through a nanopore by lowering fluid temperature.
    Yeh LH; Zhang M; Joo SW; Qian S
    Electrophoresis; 2012 Dec; 33(23):3458-65. PubMed ID: 23124983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating the transport of DNA through biofriendly nanochannels in a thin solid membrane.
    Wang D; Harrer S; Luan B; Stolovitzky G; Peng H; Afzali-Ardakani A
    Sci Rep; 2014 Feb; 4():3985. PubMed ID: 24496378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substantial Slowing of Electrophoretic Translocation of DNA through a Nanopore Using Coherent Multiple Entropic Traps.
    Chen K; Muthukumar M
    ACS Nano; 2023 May; 17(10):9197-9208. PubMed ID: 37146154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores.
    Liang L; Liu F; Kong Z; Shen JW; Wang H; Wang H; Li L
    Phys Chem Chem Phys; 2018 Nov; 20(45):28886-28893. PubMed ID: 30420980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous Translocation of Single-Stranded DNA in Graphene-MoS
    Zou A; Xiu P; Ou X; Zhou R
    J Phys Chem B; 2020 Oct; 124(43):9490-9496. PubMed ID: 33064482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol.
    Luan B; Wang D; Zhou R; Harrer S; Peng H; Stolovitzky G
    Nanotechnology; 2012 Nov; 23(45):455102. PubMed ID: 23064727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Transport across the Ionic Liquid-Aqueous Electrolyte Interface in a MoS
    Shankla M; Aksimentiev A
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26624-26634. PubMed ID: 32393017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.
    Belkin M; Aksimentiev A
    ACS Appl Mater Interfaces; 2016 May; 8(20):12599-608. PubMed ID: 26963065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore.
    Bhattacharya S; Yoo J; Aksimentiev A
    ACS Nano; 2016 Apr; 10(4):4644-51. PubMed ID: 27054820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.