These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22081085)

  • 1. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp.
    Mikkelsen MB; Letailleur AA; Søndergård E; Barthel E; Teisseire J; Marie R; Kristensen A
    Lab Chip; 2012 Jan; 12(2):262-7. PubMed ID: 22081085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical arrays of nanofluidic channels fabricated without nanolithography.
    Sordan R; Miranda A; Traversi F; Colombo D; Chrastina D; Isella G; Masserini M; Miglio L; Kern K; Balasubramanian K
    Lab Chip; 2009 Jun; 9(11):1556-60. PubMed ID: 19458862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA.
    Thamdrup LH; Klukowska A; Kristensen A
    Nanotechnology; 2008 Mar; 19(12):125301. PubMed ID: 21817722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic channels fabrication and manipulation of DNA molecules.
    Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H
    IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanofluidic device for single molecule studies with in situ control of environmental solution conditions.
    Zhang C; Jiang K; Liu F; Doyle PS; van Kan JA; van der Maarel JR
    Lab Chip; 2013 Jul; 13(14):2821-6. PubMed ID: 23674166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nanofluidic channel with embedded transverse nanoelectrodes.
    Maleki T; Mohammadi S; Ziaie B
    Nanotechnology; 2009 Mar; 20(10):105302. PubMed ID: 19417517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injection molded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments.
    Utko P; Persson F; Kristensen A; Larsen NB
    Lab Chip; 2011 Jan; 11(2):303-8. PubMed ID: 21057689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis.
    Wang C; Ouyang J; Gao HL; Chen HW; Xu JJ; Xia XH; Chen HY
    Talanta; 2011 Jul; 85(1):298-303. PubMed ID: 21645702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting micro- and nanofluidic devices using supercritical water.
    Riehn R; Austin RH
    Anal Chem; 2006 Aug; 78(16):5933-4. PubMed ID: 16906743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process.
    Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser.
    He F; Cheng Y; Xu Z; Liao Y; Xu J; Sun H; Wang C; Zhou Z; Sugioka K; Midorikawa K; Xu Y; Chen X
    Opt Lett; 2010 Feb; 35(3):282-4. PubMed ID: 20125695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules.
    Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q
    Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.