These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 22081260)
1. Whether ideal free or not, predatory mites distribute so as to maximize reproduction. van der Hammen T; Montserrat M; Sabelis MW; de Roos AM; Janssen A Oecologia; 2012 May; 169(1):95-104. PubMed ID: 22081260 [TBL] [Abstract][Full Text] [Related]
2. Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Choh Y; Sabelis MW; Janssen A Exp Appl Acarol; 2015 Dec; 67(4):477-91. PubMed ID: 26474858 [TBL] [Abstract][Full Text] [Related]
3. Predators induce egg retention in prey. Montserrat M; Bas C; Magalhães S; Sabelis MW; de Roos AM; Janssen A Oecologia; 2007 Jan; 150(4):699-705. PubMed ID: 16955289 [TBL] [Abstract][Full Text] [Related]
4. Cues of intraguild predators affect the distribution of intraguild prey. Choh Y; van der Hammen T; Sabelis MW; Janssen A Oecologia; 2010 Jun; 163(2):335-40. PubMed ID: 20354730 [TBL] [Abstract][Full Text] [Related]
6. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Wiethoff J; Poehling HM; Meyhöfer R Exp Appl Acarol; 2004; 34(3-4):239-61. PubMed ID: 15651523 [TBL] [Abstract][Full Text] [Related]
7. Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Buitenhuis R; Shipp L; Scott-Dupree C Bull Entomol Res; 2010 Apr; 100(2):167-73. PubMed ID: 19419591 [TBL] [Abstract][Full Text] [Related]
8. Intraguild interactions among three spider mite predators: predation preference and effects on juvenile development and oviposition. Rahmani H; Daneshmandi A; Walzer A Exp Appl Acarol; 2015 Dec; 67(4):493-505. PubMed ID: 26462926 [TBL] [Abstract][Full Text] [Related]
9. Effects of mating rates on oviposition, sex ratio and longevity in a predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Ji J; Zhang ZQ; Zhang Y; Chen X; Lin J Exp Appl Acarol; 2007; 43(3):171-80. PubMed ID: 17968663 [TBL] [Abstract][Full Text] [Related]
10. Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). De Courcy Williams ME; Kravar-Garde L; Fenlon JS; Sunderland KD Exp Appl Acarol; 2004; 32(1-2):1-13. PubMed ID: 15139268 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the effectiveness of Neoseiulus cucumeris (Oudemans) as a predator of Tuta absoluta (Meyrick). Al-Azzazy MM; Alhewairini SS; Abdel-Baky NF; Qureshi MZ; Hajjar MJ Braz J Biol; 2022; 82():e255753. PubMed ID: 35019067 [TBL] [Abstract][Full Text] [Related]
12. Does Long-Term Feeding on Alternative Prey Affect the Biological Performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the Target Spider Mites? Li YY; Zhang GH; Tian CB; Liu MX; Liu YQ; Liu H; Wang JJ J Econ Entomol; 2017 Jun; 110(3):915-923. PubMed ID: 28334233 [TBL] [Abstract][Full Text] [Related]
13. Genomic insights into mite phylogeny, fitness, development, and reproduction. Zhang YX; Chen X; Wang JP; Zhang ZQ; Wei H; Yu HY; Zheng HK; Chen Y; Zhang LS; Lin JZ; Sun L; Liu DY; Tang J; Lei Y; Li XM; Liu M BMC Genomics; 2019 Dec; 20(1):954. PubMed ID: 31818245 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting the distribution of a predatory mite on greenhouse sweet pepper. Weintraub PG; Kleitman S; Alchanatis V; Palevsky E Exp Appl Acarol; 2007; 42(1):23-35. PubMed ID: 17534730 [TBL] [Abstract][Full Text] [Related]
15. Assessing the effects of Bt Maize on the predatory mite Neoseiulus cucumeris. Obrist LB; Klein H; Dutton A; Bigler F Exp Appl Acarol; 2006; 38(2-3):125-39. PubMed ID: 16596347 [TBL] [Abstract][Full Text] [Related]
16. Phytoseiid predatory mites can disperse entomopathogenic fungi to prey patches. Lin G; Guertin C; Di Paolo SA; Todorova S; Brodeur J Sci Rep; 2019 Dec; 9(1):19435. PubMed ID: 31857623 [TBL] [Abstract][Full Text] [Related]
17. The relationship between dietary specialism and availability of food and water on cannibalistic interactions among predatory mites in protected crops. de Courcy Williams ME; Kravar-Garde L; Fenlon JS; Sunderland KD Exp Appl Acarol; 2004; 33(1-2):31-44. PubMed ID: 15285136 [TBL] [Abstract][Full Text] [Related]
18. Prey consumption rates and compatibility with pesticides of four predatory mites from the family Phytoseiidae attacking Thrips palmi Karny (Thysanoptera: Thripidae). Cuthbertson AG; Mathers JJ; Croft P; Nattriss N; Blackburn LF; Luo W; Northing P; Murai T; Jacobson RJ; Walters KF Pest Manag Sci; 2012 Sep; 68(9):1289-95. PubMed ID: 22517790 [TBL] [Abstract][Full Text] [Related]
19. Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops. Hewitt LC; Shipp L; Buitenhuis R; Scott-Dupree C Exp Appl Acarol; 2015 Apr; 65(4):435-50. PubMed ID: 25408478 [TBL] [Abstract][Full Text] [Related]
20. Genetic variation in foraging traits among inbred lines of a predatory mite. Jia F; Margolies DC; Boyer JE; Charlton RE Heredity (Edinb); 2002 Nov; 89(5):371-9. PubMed ID: 12399996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]