BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22081329)

  • 1. An optimum fermentation model established by genetic algorithm for biotransformation from crude polydatin to resveratrol.
    Chong Y; Yan A; Yang X; Cai Y; Chen J
    Appl Biochem Biotechnol; 2012 Jan; 166(2):446-57. PubMed ID: 22081329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of polydatin to resveratrol in Polygonum cuspidatum roots by highly immobilized edible Aspergillus niger and Yeast.
    Jin S; Luo M; Wang W; Zhao CJ; Gu CB; Li CY; Zu YG; Fu YJ; Guan Y
    Bioresour Technol; 2013 May; 136():766-70. PubMed ID: 23566471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic transformation of polydatin to resveratrol by piceid-β-D-glucosidase from Aspergillus oryzae.
    Chen M; Li D; Gao Z; Zhang C
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1411-6. PubMed ID: 24362562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae.
    Wang H; Liu L; Guo YX; Dong YS; Zhang DJ; Xiu ZL
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):763-8. PubMed ID: 17333175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of a novel polydatin-β-d-glucosidase from Aspergillus niger SK34.002 and its application in enzymatic preparation of resveratrol.
    Zhou L; Li S; Zhang T; Mu W; Jiang B
    J Sci Food Agric; 2016 May; 96(7):2588-95. PubMed ID: 26381723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli modular coculture system for resveratrol glucosides production.
    Thuan NH; Trung NT; Cuong NX; Van Cuong D; Van Quyen D; Malla S
    World J Microbiol Biotechnol; 2018 May; 34(6):75. PubMed ID: 29796765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and functional characterization of the first stilbene glucoside-specific β-glucosidase isolated from Lactobacillus kimchi.
    Ko JA; Park JY; Kwon HJ; Ryu YB; Jeong HJ; Park SJ; Kim CY; Oh HM; Park CS; Lim YH; Kim D; Rho MC; Lee WS; Kim YM
    Enzyme Microb Technol; 2014 Dec; 67():59-66. PubMed ID: 25442950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production.
    Shi J; Zeng Q; Liu Y; Pan Z
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):369-79. PubMed ID: 22526800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial transformation of neoandrographolide by Aspergillus niger (AS 3.739).
    Chen LX; Qiu F; Qu GX; Yao XS
    J Asian Nat Prod Res; 2007; 9(3-5):463-9. PubMed ID: 17701567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of resveratrol to piceid by Bacillus cereus.
    Cichewicz RH; Kouzi SA
    J Nat Prod; 1998 Oct; 61(10):1313-4. PubMed ID: 9784180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of an Endophyte Transforming Polydatin to Resveratrol from
    Liu J; Zhang X; Yan T; Wang F; Li J; Jia L; Jia J; Hu G
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient biotransformation of polydatin to resveratrol by snailase hydrolysis using response surface methodology optimization.
    Wang Z; Zhao LC; Li W; Zhang LX; Zhang J; Liang J
    Molecules; 2013 Aug; 18(8):9717-26. PubMed ID: 23945645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of resveratrol using resting cells of non-genetically modified Alternaria sp.
    Zhang J; Shi J; Liu Y
    Biotechnol Appl Biochem; 2013; 60(2):236-43. PubMed ID: 23586428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of retention characteristics and quality control of nutraceuticals containing resveratrol and polydatin using fused-core column chromatography.
    Fibigr J; Šatínský D; Solich P
    J Pharm Biomed Anal; 2016 Feb; 120():112-9. PubMed ID: 26719982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of process parameters for the production of an OTA-hydrolyzing enzyme from Aspergillus niger under solid-state fermentation.
    Abrunhosa L; Venâncio A; Teixeira JA
    J Biosci Bioeng; 2011 Oct; 112(4):351-5. PubMed ID: 21778112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of the Streptomyces scabies phytotoxin thaxtomin A by the fungus Aspergillus niger.
    Lazarovits G; Hill J; King RR; Calhoun LA
    Can J Microbiol; 2004 Feb; 50(2):121-6. PubMed ID: 15052314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of Smilax china root by Aspergillus usami and Saccharomyces cerevisiae promoted concentration of resveratrol and oxyresveratrol and the free-radical scavenging activity.
    Yoon SR; Yang SH; Suh JW; Shim SM
    J Sci Food Agric; 2014 Jul; 94(9):1822-6. PubMed ID: 24919869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of piceid metabolites in rat by liquid chromatography tandem mass spectrometry.
    Wang D; Zhang Z; Ju J; Wang X; Qiu W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):69-74. PubMed ID: 21130054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of quinazoline and phthalazine by Aspergillus niger.
    Sutherland JB; Heinze TM; Schnackenberg LK; Freeman JP; Williams AJ
    J Biosci Bioeng; 2011 Mar; 111(3):333-5. PubMed ID: 21169055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity.
    Wang Y; Zhang M; Zhang Z; Lu H; Gao X; Yue P
    J Sci Food Agric; 2017 Dec; 97(15):5100-5106. PubMed ID: 28422292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.