BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 22081714)

  • 1. Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica.
    López-López A; Rogel-Hernández MA; Barois I; Ortiz Ceballos AI; Martínez J; Ormeño-Orrillo E; Martínez-Romero E
    Int J Syst Evol Microbiol; 2012 Sep; 62(Pt 9):2264-2271. PubMed ID: 22081714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China.
    Huo Y; Tong W; Wang J; Wang F; Bai W; Wang E; Shi P; Chen W; Wei G
    Int J Syst Evol Microbiol; 2019 Jul; 69(7):2049-2056. PubMed ID: 31091180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhizobium indicum sp. nov., isolated from root nodules of pea (Pisum sativum) cultivated in the Indian trans-Himalayas.
    Rahi P; Giram P; Chaudhari D; diCenzo GC; Kiran S; Khullar A; Chandel M; Gawari S; Mohan A; Chavan S; Mahajan B
    Syst Appl Microbiol; 2020 Sep; 43(5):126127. PubMed ID: 32847793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum.
    Zhang YJ; Zheng WT; Everall I; Young JPW; Zhang XX; Tian CF; Sui XH; Wang ET; Chen WX
    Int J Syst Evol Microbiol; 2015 Sep; 65(9):2960-2967. PubMed ID: 26025940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The outstanding diversity of rhizobia microsymbionts of common bean (Phaseolus vulgaris L.) in Mato Grosso do Sul, central-western Brazil, revealing new Rhizobium species.
    Moura FT; Helene LCF; Ribeiro RA; Nogueira MA; Hungria M
    Arch Microbiol; 2023 Sep; 205(9):325. PubMed ID: 37659972
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Young JPW; Jorrin B; Moeskjær S; James EK
    Int J Syst Evol Microbiol; 2023 Jul; 73(7):. PubMed ID: 37486744
    [No Abstract]   [Full Text] [Related]  

  • 7. High-quality draft genome sequence of
    Klonowska A; López-López A; Moulin L; Ardley J; Gollagher M; Marinova D; Tian R; Huntemann M; Reddy TB; Varghese N; Woyke T; Markowitz V; Ivanova N; Seshadri R; Baeshen MN; Baeshen NA; Kyrpides N; Reeve W
    Stand Genomic Sci; 2017; 12():7. PubMed ID: 28116041
    [No Abstract]   [Full Text] [Related]  

  • 8. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules.
    Amarger N; Macheret V; Laguerre G
    Int J Syst Bacteriol; 1997 Oct; 47(4):996-1006. PubMed ID: 9336898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil.
    Baraúna AC; Rouws LFM; Simoes-Araujo JL; Dos Reis Junior FB; Iannetta PPM; Maluk M; Goi SR; Reis VM; James EK; Zilli JE
    Int J Syst Evol Microbiol; 2016 Oct; 66(10):4118-4124. PubMed ID: 27453319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of organic plant breeding on the rhizosphere microbiome of common bean (
    Park HE; Nebert L; King RM; Busby P; Myers JR
    Front Plant Sci; 2023; 14():1251919. PubMed ID: 37954997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, genomic characterization, and mushroom growth-promoting effect of the first fungus-derived
    Hua Z; Liu T; Han P; Zhou J; Zhao Y; Huang L; Yuan Y
    Front Microbiol; 2022; 13():947687. PubMed ID: 35935222
    [No Abstract]   [Full Text] [Related]  

  • 12. Genetic characterization at the species and symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece.
    Efstathiadou E; Ntatsi G; Savvas D; Tampakaki AP
    Sci Rep; 2021 Apr; 11(1):8674. PubMed ID: 33883620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review.
    Shamseldin A; Velázquez E
    World J Microbiol Biotechnol; 2020 Apr; 36(5):63. PubMed ID: 32314065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of rhizobia from nodules of
    Duangkhet M; Chikoti Y; Thepsukhon A; Thapanapongworakul P; Chungopast S; Tajima S; Nomura M
    Plant Biotechnol (Tokyo); 2018 Jun; 35(2):123-129. PubMed ID: 31819714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Interaction Studies Reveal Superior Performance of Rhizobium tropici CIAT899 on a Range of Diverse East African Common Bean (Phaseolus vulgaris L.) Genotypes.
    Gunnabo AH; Geurts R; Wolde-Meskel E; Degefu T; Giller KE; van Heerwaarden J
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31562174
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Zhang Z; Li Y; Pan X; Shao S; Liu W; Wang ET; Xie Z
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31562167
    [No Abstract]   [Full Text] [Related]  

  • 17. Natural rhizobial diversity helps to reveal genes and QTLs associated with biological nitrogen fixation in common bean.
    Muñoz-Azcarate O; González AM; Santalla M
    AIMS Microbiol; 2017; 3(3):435-466. PubMed ID: 31294170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history.
    Klonowska A; Melkonian R; Miché L; Tisseyre P; Moulin L
    BMC Genomics; 2018 Jan; 19(1):105. PubMed ID: 29378510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity in Legume-Rhizobia Symbioses.
    Andrews M; Andrews ME
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28346361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Draft genome sequence of type strain HBR26
    Aserse AA; Woyke T; Kyrpides NC; Whitman WB; Lindström K
    Stand Genomic Sci; 2017; 12():14. PubMed ID: 28163823
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.