These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22082022)

  • 1. Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal.
    Brittman S; Gao H; Garnett EC; Yang P
    Nano Lett; 2011 Dec; 11(12):5189-95. PubMed ID: 22082022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency.
    Ibrahim Zamkoye I; Lucas B; Vedraine S
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles.
    Liu K; Qu S; Zhang X; Tan F; Wang Z
    Nanoscale Res Lett; 2013 Feb; 8(1):88. PubMed ID: 23418988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core.
    Zhan Y; Zhao J; Zhou C; Alemayehu M; Li Y; Li Y
    Opt Express; 2012 May; 20(10):11506-16. PubMed ID: 22565770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells.
    Liu X; Wu B; Zhang Q; Yip JN; Yu G; Xiong Q; Mathews N; Sum TC
    ACS Nano; 2014 Oct; 8(10):10101-10. PubMed ID: 25198060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study.
    Dawi EA; Karar AA; Mustafa E; Nur O
    Nanoscale Res Lett; 2021 Sep; 16(1):149. PubMed ID: 34542730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large plasmonic absorption enhancement effect of triangular silver nanowires in silicon.
    Shahriar Sabuktagin M; Syifa Hamdan K
    R Soc Open Sci; 2020 Jul; 7(7):191926. PubMed ID: 32874602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light trapping in silicon nanowire solar cells.
    Garnett E; Yang P
    Nano Lett; 2010 Mar; 10(3):1082-7. PubMed ID: 20108969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Study of Plasmonic Scattering and Light Trapping Effect in Silicon Nanowire Array Solar Cells.
    Meng L; Zhang Y; Yam C
    J Phys Chem Lett; 2017 Feb; 8(3):571-575. PubMed ID: 28076951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors.
    Cao S; Yu D; Lin Y; Zhang C; Lu L; Yin M; Zhu X; Chen X; Li D
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26184-26192. PubMed ID: 32392028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency improvement of thin film solar cell using silver pyramids array and antireflective layer.
    Mohsin ASM; Mondal S; Mobashera M; Malik A; Islam M; Rubaiat M
    Heliyon; 2023 Jun; 9(6):e16749. PubMed ID: 37303542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric nanostructures for broadband light trapping in organic solar cells.
    Raman A; Yu Z; Fan S
    Opt Express; 2011 Sep; 19(20):19015-26. PubMed ID: 21996842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity.
    Gai F; Zhang C; Zhan Y; Li X
    Opt Express; 2016 Dec; 24(26):A1505-A1513. PubMed ID: 28059281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells.
    Meng L; Yam C; Zhang Y; Wang R; Chen G
    J Phys Chem Lett; 2015 Nov; 6(21):4410-6. PubMed ID: 26722976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells.
    Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J
    Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.
    Zhang Y; Jia B; Gu M
    Opt Express; 2016 Mar; 24(6):A506-14. PubMed ID: 27136871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.