These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 22082022)
21. Nanostructures for Light Trapping in Thin Film Solar Cells. Peter Amalathas A; Alkaisi MM Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261 [TBL] [Abstract][Full Text] [Related]
22. Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm. Lu S; Lingley Z; Asano T; Harris D; Barwicz T; Guha S; Madhukar A Nano Lett; 2009 Dec; 9(12):4548-52. PubMed ID: 19856942 [TBL] [Abstract][Full Text] [Related]
23. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers. van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324 [TBL] [Abstract][Full Text] [Related]
24. Design of a plasmonic back reflector for silicon nanowire decorated solar cells. Ren R; Guo Y; Zhu R Opt Lett; 2012 Oct; 37(20):4245-7. PubMed ID: 23073425 [TBL] [Abstract][Full Text] [Related]
25. Highly absorbing solar cells--a survey of plasmonic nanostructures. Dunbar RB; Pfadler T; Schmidt-Mende L Opt Express; 2012 Mar; 20 Suppl 2():A177-89. PubMed ID: 22418666 [TBL] [Abstract][Full Text] [Related]
26. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films. Shen T; Tan Q; Dai Z; Padture NP; Pacifici D Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32660111 [TBL] [Abstract][Full Text] [Related]
27. Absorption enhancement of single silicon nanowire by tailoring rear metallic film for photovoltaic applications. Wu S; Li X; Zhan Y; Li K Opt Lett; 2014 Feb; 39(4):817-20. PubMed ID: 24562214 [TBL] [Abstract][Full Text] [Related]
28. Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength-Scale Silver Particles. Dabirian A; Taghavinia N ACS Appl Mater Interfaces; 2015 Jul; 7(27):14926-32. PubMed ID: 26135021 [TBL] [Abstract][Full Text] [Related]
29. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures. Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169 [TBL] [Abstract][Full Text] [Related]
30. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells. Zhang Y; Cai B; Jia B Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335223 [TBL] [Abstract][Full Text] [Related]
31. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Chen X; Jia B; Saha JK; Cai B; Stokes N; Qiao Q; Wang Y; Shi Z; Gu M Nano Lett; 2012 May; 12(5):2187-92. PubMed ID: 22300399 [TBL] [Abstract][Full Text] [Related]
33. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476 [TBL] [Abstract][Full Text] [Related]
34. A modified architecture of a perovskite solar cell with an enhanced optical absorption in the visible spectrum. Tooghi A; Karimi Yonjali Y Nanotechnology; 2023 May; 34(30):. PubMed ID: 37105141 [TBL] [Abstract][Full Text] [Related]
35. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors. Disney CER; Pillai S; Green MA Sci Rep; 2017 Oct; 7(1):12826. PubMed ID: 28993645 [TBL] [Abstract][Full Text] [Related]
36. Three-Dimensional Plasmonic Nanostructure Design for Boosting Photoelectrochemical Activity. Xu R; Wen L; Wang Z; Zhao H; Xu S; Mi Y; Xu Y; Sommerfeld M; Fang Y; Lei Y ACS Nano; 2017 Jul; 11(7):7382-7389. PubMed ID: 28671810 [TBL] [Abstract][Full Text] [Related]