These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22082022)

  • 41. Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices.
    de Souza ML; Corio P; Brolo AG
    Phys Chem Chem Phys; 2012 Dec; 14(45):15722-8. PubMed ID: 23090151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons.
    Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A
    Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Si nanowire phototransistors at telecommunication wavelengths by plasmon-enhanced two-photon absorption.
    Siampour H; Dan Y
    Opt Express; 2016 Mar; 24(5):4601-4609. PubMed ID: 29092288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy.
    Howell SL; Padalkar S; Yoon K; Li Q; Koleske DD; Wierer JJ; Wang GT; Lauhon LJ
    Nano Lett; 2013 Nov; 13(11):5123-8. PubMed ID: 24099617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling light trapping in nanostructured solar cells.
    Ferry VE; Polman A; Atwater HA
    ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles.
    Ho WJ; Su SY; Lee YY; Syu HJ; Lin CF
    Materials (Basel); 2015 Sep; 8(10):6668-6676. PubMed ID: 28793591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of dual-diameter nanoholes for efficient solar-light harvesting.
    Zhang C; Li X; Shang A; Wu S; Zhan Y; Yang Z
    Nanoscale Res Lett; 2014; 9(1):481. PubMed ID: 25258605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Semiconductor nanowire optical antenna solar absorbers.
    Cao L; Fan P; Vasudev AP; White JS; Yu Z; Cai W; Schuller JA; Fan S; Brongersma ML
    Nano Lett; 2010 Feb; 10(2):439-45. PubMed ID: 20078065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays.
    Dagytė V; Anttu N
    Nanotechnology; 2019 Jan; 30(2):025710. PubMed ID: 30411712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells.
    Ferry VE; Verschuuren MA; Lare MC; Schropp RE; Atwater HA; Polman A
    Nano Lett; 2011 Oct; 11(10):4239-45. PubMed ID: 21875103
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells.
    Li Y; Yan X; Wu Y; Zhang X; Ren X
    Nanoscale Res Lett; 2015 Dec; 10(1):436. PubMed ID: 26546326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photovoltaic measurements in single-nanowire silicon solar cells.
    Kelzenberg MD; Turner-Evans DB; Kayes BM; Filler MA; Putnam MC; Lewis NS; Atwater HA
    Nano Lett; 2008 Feb; 8(2):710-4. PubMed ID: 18269257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of silver core position on enhanced photon absorption of single nanowire α-Si solar cells.
    Shi L; Zhou Z; Huang Z
    Opt Express; 2013 Nov; 21 Suppl 6():A1007-17. PubMed ID: 24514921
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells.
    Paetzold UW; Moulin E; Pieters BE; Carius R; Rau U
    Opt Express; 2011 Nov; 19 Suppl 6():A1219-30. PubMed ID: 22109618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application.
    Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I
    Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal.
    Zhu LH; Shao MR; Peng RW; Fan RH; Huang XR; Wang M
    Opt Express; 2013 May; 21 Suppl 3():A313-23. PubMed ID: 24104419
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells.
    Raja W; Bozzola A; Zilio P; Miele E; Panaro S; Wang H; Toma A; Alabastri A; De Angelis F; Zaccaria RP
    Sci Rep; 2016 Apr; 6():24539. PubMed ID: 27080420
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extreme light absorption by multiple plasmonic layers on upgraded metallurgical grade silicon solar cells.
    Lee DH; Kwon JY; Maldonado S; Tuteja A; Boukai A
    Nano Lett; 2014; 14(4):1961-7. PubMed ID: 24611793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.