These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22082179)

  • 1. Protonation states of important acidic residues in the central Ca²⁺ ion binding sites of the Ca²⁺-ATPase: a molecular modeling study.
    Musgaard M; Thøgersen L; Schiøtt B
    Biochemistry; 2011 Dec; 50(51):11109-20. PubMed ID: 22082179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic Characterization of the First Step of Calcium Pump Activation Associated with Proton Countertransport.
    Ramírez-Salinas GL; Espinoza-Fonseca LM
    Biochemistry; 2015 Aug; 54(33):5235-41. PubMed ID: 26250140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton Countertransport and Coupled Gating in the Sarcoplasmic Reticulum Calcium Pump.
    Rui H; Das A; Nakamoto R; Roux B
    J Mol Biol; 2018 Dec; 430(24):5050-5065. PubMed ID: 30539761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracing cytoplasmic Ca(2+) ion and water access points in the Ca(2+)-ATPase.
    Musgaard M; Thøgersen L; Schiøtt B; Tajkhorshid E
    Biophys J; 2012 Jan; 102(2):268-77. PubMed ID: 22339863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase.
    Bublitz M; Musgaard M; Poulsen H; Thøgersen L; Olesen C; Schiøtt B; Morth JP; Møller JV; Nissen P
    J Biol Chem; 2013 Apr; 288(15):10759-65. PubMed ID: 23400778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-level mechanisms for phospholamban regulation of the calcium pump.
    Espinoza-Fonseca LM; Autry JM; Ramírez-Salinas GL; Thomas DD
    Biophys J; 2015 Apr; 108(7):1697-1708. PubMed ID: 25863061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation of the acidic residues in the transmembrane cation-binding sites of the ca(2+) pump.
    Sugita Y; Miyashita N; Ikeguchi M; Kidera A; Toyoshima C
    J Am Chem Soc; 2005 May; 127(17):6150-1. PubMed ID: 15853302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preexisting domain motions underlie protonation-dependent structural transitions of the P-type Ca
    Fernández-de Gortari E; Espinoza-Fonseca LM
    Phys Chem Chem Phys; 2017 Apr; 19(15):10153-10162. PubMed ID: 28374038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Changes of Sarco/Endoplasmic Reticulum Ca
    Rodríguez Y; Májeková M
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32024167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Structure and Dynamics of the Ca
    Aguayo-Ortiz R; Espinoza-Fonseca LM
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Side-chain protonation and mobility in the sarcoplasmic reticulum Ca2+-ATPase: implications for proton countertransport and Ca2+ release.
    Hauser K; Barth A
    Biophys J; 2007 Nov; 93(9):3259-70. PubMed ID: 17938423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations.
    Sugita Y; Ikeguchi M; Toyoshima C
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21465-9. PubMed ID: 21098671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonation and hydrogen bonding of Ca2+ site residues in the E2P phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase studied by a combination of infrared spectroscopy and electrostatic calculations.
    Andersson J; Hauser K; Karjalainen EL; Barth A
    Biophys J; 2008 Jan; 94(2):600-11. PubMed ID: 17890386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Cation Binding to the Sarcoendoplasmic Reticulum Calcium ATPase Pump and Impacts on Enzyme Function.
    Sun B; Stewart BD; Kucharski AN; Kekenes-Huskey PM
    J Chem Theory Comput; 2019 Apr; 15(4):2692-2705. PubMed ID: 30807147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsecond molecular dynamics simulations of Mg²⁺- and K⁺-bound E1 intermediate states of the calcium pump.
    Espinoza-Fonseca LM; Autry JM; Thomas DD
    PLoS One; 2014; 9(4):e95979. PubMed ID: 24760008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SERCA residue Glu340 mediates interdomain communication that guides Ca
    Geurts MMG; Clausen JD; Arnou B; Montigny C; Lenoir G; Corey RA; Jaxel C; Møller JV; Nissen P; Andersen JP; le Maire M; Bublitz M
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31114-31122. PubMed ID: 33229570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium binding and allosteric signaling mechanisms for the sarcoplasmic reticulum Ca²+ ATPase.
    Kekenes-Huskey PM; Metzger VT; Grant BJ; Andrew McCammon J
    Protein Sci; 2012 Oct; 21(10):1429-43. PubMed ID: 22821874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+) ATPase Conformational Transitions in Lipid Bilayers Mapped by Site-directed Ethylation and Solid-State NMR.
    Vostrikov VV; Gustavsson M; Gopinath T; Mullen D; Dicke AA; Truong V; Veglia G
    ACS Chem Biol; 2016 Feb; 11(2):329-34. PubMed ID: 26650884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed characterization of the cooperative mechanism of Ca(2+) binding and catalytic activation in the Ca(2+) transport (SERCA) ATPase.
    Zhang Z; Lewis D; Strock C; Inesi G; Nakasako M; Nomura H; Toyoshima C
    Biochemistry; 2000 Aug; 39(30):8758-67. PubMed ID: 10913287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton paths in the sarcoplasmic reticulum Ca(2+) -ATPase.
    Karjalainen EL; Hauser K; Barth A
    Biochim Biophys Acta; 2007 Nov; 1767(11):1310-8. PubMed ID: 17904096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.