These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 22082316)
1. Automated time activity classification based on global positioning system (GPS) tracking data. Wu J; Jiang C; Houston D; Baker D; Delfino R Environ Health; 2011 Nov; 10():101. PubMed ID: 22082316 [TBL] [Abstract][Full Text] [Related]
2. Refining Time-Activity Classification of Human Subjects Using the Global Positioning System. Hu M; Li W; Li L; Houston D; Wu J PLoS One; 2016; 11(2):e0148875. PubMed ID: 26919723 [TBL] [Abstract][Full Text] [Related]
3. Modeling personal particle-bound polycyclic aromatic hydrocarbon (pb-pah) exposure in human subjects in Southern California. Wu J; Tjoa T; Li L; Jaimes G; Delfino RJ Environ Health; 2012 Jul; 11():47. PubMed ID: 22784481 [TBL] [Abstract][Full Text] [Related]
4. Travel patterns during pregnancy: comparison between Global Positioning System (GPS) tracking and questionnaire data. Wu J; Jiang C; Jaimes G; Bartell S; Dang A; Baker D; Delfino RJ Environ Health; 2013 Oct; 12(1):86. PubMed ID: 24107241 [TBL] [Abstract][Full Text] [Related]
5. Validity of PALMS GPS scoring of active and passive travel compared with SenseCam. Carlson JA; Jankowska MM; Meseck K; Godbole S; Natarajan L; Raab F; Demchak B; Patrick K; Kerr J Med Sci Sports Exerc; 2015 Mar; 47(3):662-7. PubMed ID: 25010407 [TBL] [Abstract][Full Text] [Related]
6. Performances of different global positioning system devices for time-location tracking in air pollution epidemiological studies. Wu J; Jiang C; Liu Z; Houston D; Jaimes G; McConnell R Environ Health Insights; 2010 Nov; 4():93-108. PubMed ID: 21151593 [TBL] [Abstract][Full Text] [Related]
7. Automated classification of time-activity-location patterns for improved estimation of personal exposure to air pollution. Chatzidiakou L; Krause A; Kellaway M; Han Y; Li Y; Martin E; Kelly FJ; Zhu T; Barratt B; Jones RL Environ Health; 2022 Dec; 21(1):125. PubMed ID: 36482402 [TBL] [Abstract][Full Text] [Related]
8. An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data. Procter DS; Page AS; Cooper AR; Nightingale CM; Ram B; Rudnicka AR; Whincup PH; Clary C; Lewis D; Cummins S; Ellaway A; Giles-Corti B; Cook DG; Owen CG Int J Behav Nutr Phys Act; 2018 Sep; 15(1):91. PubMed ID: 30241483 [TBL] [Abstract][Full Text] [Related]
9. Walking objectively measured: classifying accelerometer data with GPS and travel diaries. Kang B; Moudon AV; Hurvitz PM; Reichley L; Saelens BE Med Sci Sports Exerc; 2013 Jul; 45(7):1419-28. PubMed ID: 23439414 [TBL] [Abstract][Full Text] [Related]
10. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
11. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
12. Quantifying time spent outdoors: A versatile method using any type of global positioning system (GPS) and accelerometer devices. Liu W; Chambers T; Clevenger KA; Pfeiffer KA; Rzotkiewicz Z; Park H; Pearson AL PLoS One; 2024; 19(5):e0299943. PubMed ID: 38701085 [TBL] [Abstract][Full Text] [Related]
13. Study of human outdoor walking with a low-cost GPS and simple spreadsheet analysis. Le Faucheur A; Abraham P; Jaquinandi V; Bouyé P; Saumet JL; Noury-Desvaux B Med Sci Sports Exerc; 2007 Sep; 39(9):1570-8. PubMed ID: 17805090 [TBL] [Abstract][Full Text] [Related]
14. A pilot study using global positioning systems (GPS) devices and surveys to ascertain older adults' travel patterns. Yen IH; Leung CW; Lan M; Sarrafzadeh M; Kayekjian KC; Duru OK J Appl Gerontol; 2015 Apr; 34(3):NP190-201. PubMed ID: 24652872 [TBL] [Abstract][Full Text] [Related]
15. Predicting metabolic rate during level and uphill outdoor walking using a low-cost GPS receiver. de Müllenheim PY; Dumond R; Gernigon M; Mahé G; Lavenu A; Bickert S; Prioux J; Noury-Desvaux B; Le Faucheur A J Appl Physiol (1985); 2016 Aug; 121(2):577-88. PubMed ID: 27402559 [TBL] [Abstract][Full Text] [Related]
16. Classification of indoor-outdoor location using combined global positioning system (GPS) and temperature data for personal exposure assessment. Lee B; Lim C; Lee K Environ Health Prev Med; 2017 Apr; 22(1):29. PubMed ID: 29165131 [TBL] [Abstract][Full Text] [Related]
17. Analysis of Personal and Home Characteristics Associated with the Elemental Composition of PM2.5 in Indoor, Outdoor, and Personal Air in the RIOPA Study. Ryan PH; Brokamp C; Fan ZH; Rao MB Res Rep Health Eff Inst; 2015 Dec; (185):3-40. PubMed ID: 26934775 [TBL] [Abstract][Full Text] [Related]
18. Comparing the Data Quality of Global Positioning System Devices and Mobile Phones for Assessing Relationships Between Place, Mobility, and Health: Field Study. Goodspeed R; Yan X; Hardy J; Vydiswaran VGV; Berrocal VJ; Clarke P; Romero DM; Gomez-Lopez IN; Veinot T JMIR Mhealth Uhealth; 2018 Aug; 6(8):e168. PubMed ID: 30104185 [TBL] [Abstract][Full Text] [Related]
19. Identifying walking trips from GPS and accelerometer data in adolescent females. Rodriguez DA; Cho GH; Elder JP; Conway TL; Evenson KR; Ghosh-Dastidar B; Shay E; Cohen D; Veblen-Mortenson S; Pickrell J; Lytle L J Phys Act Health; 2012 Mar; 9(3):421-31. PubMed ID: 21934163 [TBL] [Abstract][Full Text] [Related]
20. Addressing location uncertainties in GPS-based activity monitoring: A methodological framework. Wan N; Lin G; Wilson GJ Trans GIS; 2017 Aug; 21(4):764-781. PubMed ID: 28943777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]