These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22082526)

  • 21. Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics.
    Ping Chu H; Li XY
    Biotechnol Bioeng; 2005 May; 90(3):323-31. PubMed ID: 15800862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of jet loop bioreactors.
    Koseoglu-Imer DY; Dizge N; Karagunduz A; Keskinler B
    Bioresour Technol; 2011 Jul; 102(13):6843-9. PubMed ID: 21536431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters.
    Sun FY; Wang XM; Li XY
    Bioresour Technol; 2011 Apr; 102(7):4718-25. PubMed ID: 21316942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism.
    Jiang T; Kennedy MD; Guinzbourg BF; Vanrolleghem PA; Schippers JC
    Water Sci Technol; 2005; 51(6-7):19-25. PubMed ID: 16003957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane fouling control in membrane bioreactors (MBRs) using granular materials.
    Iorhemen OT; Hamza RA; Tay JH
    Bioresour Technol; 2017 Sep; 240():9-24. PubMed ID: 28314664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material.
    Meng F; Chae SR; Drews A; Kraume M; Shin HS; Yang F
    Water Res; 2009 Apr; 43(6):1489-512. PubMed ID: 19178926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BSM-MBR: a benchmark simulation model to compare control and operational strategies for membrane bioreactors.
    Maere T; Verrecht B; Moerenhout S; Judd S; Nopens I
    Water Res; 2011 Mar; 45(6):2181-90. PubMed ID: 21329957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative investigation on the impact of polymeric substances on membrane fouling during sub-critical and critical flux operation of a municipal membrane bioreactor.
    Lyko S; Wintgens T; Melin T
    Water Sci Technol; 2008; 58(9):1849-55. PubMed ID: 19029728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control.
    Ujang Z; Ng SS; Nagaoka H
    Water Sci Technol; 2005; 51(10):335-42. PubMed ID: 16104438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.
    Jin L; Ong SL; Ng HY
    Water Res; 2010 Dec; 44(20):5907-18. PubMed ID: 20709347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights into membrane fouling in submerged MBR under sub-critical flux condition.
    Li J; Zhang X; Cheng F; Liu Y
    Bioresour Technol; 2013 Jun; 137():404-8. PubMed ID: 23611700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison between novel vibrating ceramic MBR and conventional air-sparging MBR for domestic wastewater treatment: Performance, fouling control and energy consumption.
    Wang C; Ng TCA; Ng HY
    Water Res; 2021 Sep; 203():117521. PubMed ID: 34391023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study on membrane fouling between membrane-coupled moving bed biofilm reactor and conventional membrane bioreactor for municipal wastewater treatment.
    Yang W; Syed W; Zhou H
    Water Sci Technol; 2014; 69(5):1021-7. PubMed ID: 24622551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights on fouling development and characteristics during different fouling stages between a novel vibrating MBR and an air-sparging MBR for domestic wastewater treatment.
    Wang C; Ng TCA; Ding M; Ng HY
    Water Res; 2022 Apr; 212():118098. PubMed ID: 35114533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of membrane properties on physically reversible and irreversible fouling in membrane bioreactors.
    Tsuyuhara T; Hanamoto Y; Miyoshi T; Kimura K; Watanabe Y
    Water Sci Technol; 2010; 61(9):2235-40. PubMed ID: 20418619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterisation of initial fouling in aerobic submerged membrane bioreactors in relation to physico-chemical characteristics under different flux conditions.
    Ng TC; Ng HY
    Water Res; 2010 Apr; 44(7):2336-48. PubMed ID: 20116083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of carriers on sludge characteristics and mitigation of membrane fouling in attached-growth membrane bioreactor.
    Hu J; Ren H; Xu K; Geng J; Ding L; Yan X; Li K
    Bioresour Technol; 2012 Oct; 122():35-41. PubMed ID: 22704185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced membrane bioreactor process without chemical cleaning.
    Krause S; Zimmermann B; Meyer-Blumenroth U; Lamparter W; Siembida B; Cornel P
    Water Sci Technol; 2010; 61(10):2575-80. PubMed ID: 20453330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel filtration mode for fouling limitation in membrane bioreactors.
    Wu J; Le-Clech P; Stuetz RM; Fane AG; Chen V
    Water Res; 2008 Aug; 42(14):3677-84. PubMed ID: 18662821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fouling and its reversibility in relation to flow properties and module design in aerated hollow fibre modules for membrane bioreactors.
    Pollet S; Guigui C; Cabassud C
    Water Sci Technol; 2008; 57(4):629-36. PubMed ID: 18360006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.