These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 22082651)

  • 1. At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy.
    De Marchi M; Riovanto R; Penasa M; Cassandro M
    Meat Sci; 2012 Mar; 90(3):653-7. PubMed ID: 22082651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy.
    Zhou LJ; Wu H; Li JT; Wang ZY; Zhang LY
    Meat Sci; 2012 Mar; 90(3):658-64. PubMed ID: 22085539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of near infrared transmittance spectroscopy to predict fatty acid composition of chicken meat.
    Riovanto R; De Marchi M; Cassandro M; Penasa M
    Food Chem; 2012 Oct; 134(4):2459-64. PubMed ID: 23442711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy.
    Cecchinato A; De Marchi M; Penasa M; Casellas J; Schiavon S; Bittante G
    J Anim Sci; 2012 Feb; 90(2):429-38. PubMed ID: 21948610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy.
    Pullanagari RR; Yule IJ; Agnew M
    Meat Sci; 2015 Feb; 100():156-63. PubMed ID: 25460120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online prediction of fatty acid profiles in crossbred Limousin and Aberdeen Angus beef cattle using near infrared reflectance spectroscopy.
    Prieto N; Ross DW; Navajas EA; Richardson RI; Hyslop JJ; Simm G; Roehe R
    Animal; 2011 Jan; 5(1):155-65. PubMed ID: 22440714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of NIRS for predicting fatty acids in intramuscular fat of rabbit.
    Zomeño C; Juste V; Hernández P
    Meat Sci; 2012 Jun; 91(2):155-9. PubMed ID: 22326062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rapid determination of fatty acids in soybeans [Glycine max (L.) Merr.] by FT-near-infrared reflectance spectroscopy].
    Sun JM; Han FX; Yan SR; Yang H; Tetsuo S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1290-5. PubMed ID: 18800707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of diffuse reflectance fourier transform mid-infrared and near-infrared spectroscopy with grating-based near-infrared for the determination of fatty acids in forages.
    Calderon FJ; Reeves JB; Foster JG; Clapham WM; Fedders JM; Vigil MF; Henry WB
    J Agric Food Chem; 2007 Oct; 55(21):8302-9. PubMed ID: 17892260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].
    Tao LL; Yang XJ; Deng JM; Zhang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk.
    Coppa M; Revello-Chion A; Giaccone D; Ferlay A; Tabacco E; Borreani G
    Food Chem; 2014 May; 150():49-57. PubMed ID: 24360418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breeds and muscle types modulate performance of near-infrared reflectance spectroscopy to predict the fatty acid composition of bovine meat.
    Mourot BP; Gruffat D; Durand D; Chesneau G; Mairesse G; Andueza D
    Meat Sci; 2015 Jan; 99():104-12. PubMed ID: 25443970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of lamb meat fatty acid composition using near-infrared reflectance spectroscopy (NIRS).
    Guy F; Prache S; Thomas A; Bauchart D; Andueza D
    Food Chem; 2011 Aug; 127(3):1280-6. PubMed ID: 25214127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of chicken quality attributes by near infrared spectroscopy.
    Barbin DF; Kaminishikawahara CM; Soares AL; Mizubuti IY; Grespan M; Shimokomaki M; Hirooka EY
    Food Chem; 2015 Feb; 168():554-60. PubMed ID: 25172747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near infrared spectroscopy for high-throughput characterization of Shea tree (Vitellaria paradoxa) nut fat profiles.
    Davrieux F; Allal F; Piombo G; Kelly B; Okulo JB; Thiam M; Diallo OB; Bouvet JM
    J Agric Food Chem; 2010 Jul; 58(13):7811-9. PubMed ID: 20518501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nondestructive determination of oil content and fatty acid composition in perilla seeds by near-infrared spectroscopy.
    Kim KS; Park SH; Choung MG
    J Agric Food Chem; 2007 Mar; 55(5):1679-85. PubMed ID: 17288449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy.
    Liao YT; Fan YX; Cheng F
    Meat Sci; 2010 Dec; 86(4):901-7. PubMed ID: 20728281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An on-line near-infrared (NIR) transmission method for determining depth profiles of fatty acid composition and iodine value in porcine adipose fat tissue.
    Sørensen KM; Petersen H; Engelsen SB
    Appl Spectrosc; 2012 Feb; 66(2):218-26. PubMed ID: 22449286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of fatty acids in forages by near-infrared reflectance spectroscopy.
    Foster JG; Clapham WM; Fedders JM
    J Agric Food Chem; 2006 May; 54(9):3186-92. PubMed ID: 16637670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on developing calibration models of fatty acid composition in intact rapeseed by near infrared reflectance spectroscopy].
    Wu JG; Shi CH; Zhang HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):259-62. PubMed ID: 16826901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.