These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22083602)

  • 21. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice.
    Ferezou I; Bolea S; Petersen CC
    Neuron; 2006 May; 50(4):617-29. PubMed ID: 16701211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical potential imaging of somatosensory evoked potential induced by mechanical stimulation.
    Hori J; Kon R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4732-5. PubMed ID: 23366985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tracking functions of cortical networks on a millisecond timescale.
    Jousmäki V
    Neural Netw; 2000; 13(8-9):883-9. PubMed ID: 11156199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precision mapping of the vibrissa representation within murine primary somatosensory cortex.
    Knutsen PM; Mateo C; Kleinfeld D
    Philos Trans R Soc Lond B Biol Sci; 2016 Oct; 371(1705):. PubMed ID: 27574305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.
    Fisher JAN; Gumenchuk I
    J Neural Eng; 2018 Jun; 15(3):035004. PubMed ID: 29436519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Milliseconds of Sensory Input Abruptly Modulate the Dynamics of Cortical States for Seconds.
    Deneux T; Grinvald A
    Cereb Cortex; 2017 Sep; 27(9):4549-4563. PubMed ID: 27707770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasticity of representational maps in somatosensory cortex observed by in vivo voltage-sensitive dye imaging.
    Wallace DJ; Sakmann B
    Cereb Cortex; 2008 Jun; 18(6):1361-73. PubMed ID: 17921458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal refinement of sensory-evoked activity across layers in developing mouse barrel cortex.
    van der Bourg A; Yang JW; Stüttgen MC; Reyes-Puerta V; Helmchen F; Luhmann HJ
    Eur J Neurosci; 2019 Sep; 50(6):2955-2969. PubMed ID: 30941846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GCaMP as an indirect measure of electrical activity in rat trigeminal ganglion neurons.
    Hartung JE; Gold MS
    Cell Calcium; 2020 Jul; 89():102225. PubMed ID: 32505783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex.
    Vanni MP; Murphy TH
    J Neurosci; 2014 Nov; 34(48):15931-46. PubMed ID: 25429135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory enrichment after peripheral nerve injury restores cortical, not thalamic, receptive field organization.
    Florence SL; Boydston LA; Hackett TA; Lachoff HT; Strata F; Niblock MM
    Eur J Neurosci; 2001 May; 13(9):1755-66. PubMed ID: 11359527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation.
    Stobart JL; Ferrari KD; Barrett MJP; Stobart MJ; Looser ZJ; Saab AS; Weber B
    Cereb Cortex; 2018 Jan; 28(1):184-198. PubMed ID: 28968832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically encoded calcium indicator with NTnC-like design and enhanced fluorescence contrast and kinetics.
    Doronin DA; Barykina NV; Subach OM; Sotskov VP; Plusnin VV; Ivleva OA; Isaakova EA; Varizhuk AM; Pozmogova GE; Malyshev AY; Smirnov IV; Piatkevich KD; Anokhin KV; Enikolopov GN; Subach FV
    BMC Biotechnol; 2018 Feb; 18(1):10. PubMed ID: 29439686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo.
    Kaszas A; Szalay G; Slézia A; Bojdán A; Vanzetta I; Hangya B; Rózsa B; O'Connor R; Moreau D
    Sci Rep; 2021 May; 11(1):9775. PubMed ID: 33963220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mouse model for studying large-scale neuronal networks using EEG mapping techniques.
    Mégevand P; Quairiaux C; Lascano AM; Kiss JZ; Michel CM
    Neuroimage; 2008 Aug; 42(2):591-602. PubMed ID: 18585931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice.
    Lütcke H; Murayama M; Hahn T; Margolis DJ; Astori S; Zum Alten Borgloh SM; Göbel W; Yang Y; Tang W; Kügler S; Sprengel R; Nagai T; Miyawaki A; Larkum ME; Helmchen F; Hasan MT
    Front Neural Circuits; 2010; 4():9. PubMed ID: 20461230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites.
    Brown CE; Aminoltejari K; Erb H; Winship IR; Murphy TH
    J Neurosci; 2009 Feb; 29(6):1719-34. PubMed ID: 19211879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple frequency steady-state evoked magnetic field mapping of digit representation in primary somatosensory cortex.
    Diesch E; Preissl H; Haerle M; Schaller HE; Birbaumer N
    Somatosens Mot Res; 2001; 18(1):10-8. PubMed ID: 11327566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles.
    Halassa MM; Siegle JH; Ritt JT; Ting JT; Feng G; Moore CI
    Nat Neurosci; 2011 Jul; 14(9):1118-20. PubMed ID: 21785436
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.