These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 22083739)
21. Investigation of the impact of Tat export pathway enhancement on E. coli culture, protein production and early stage recovery. Branston SD; Matos CF; Freedman RB; Robinson C; Keshavarz-Moore E Biotechnol Bioeng; 2012 Apr; 109(4):983-91. PubMed ID: 22125050 [TBL] [Abstract][Full Text] [Related]
22. A beta-galactosidase-based bacterial two-hybrid system to assess protein-protein interactions in the correct cellular environment. Borloo J; De Smet L; Vergauwen B; Van Beeumen JJ; Devreese B J Proteome Res; 2007 Jul; 6(7):2587-95. PubMed ID: 17539672 [TBL] [Abstract][Full Text] [Related]
23. Putative membrane assembly of EtpM-colicin V chimeras. Gérard F; Pradel N; Ye C; Ize B; Yi L; Xu J; Dalbey RE; Wu LF Biochimie; 2004; 86(4-5):283-6. PubMed ID: 15194231 [TBL] [Abstract][Full Text] [Related]
24. Twin-arginine translocation of methyl parathion hydrolase in Bacillus subtilis. Yang C; Song C; Freudl R; Mulchandani A; Qiao C Environ Sci Technol; 2010 Oct; 44(19):7607-12. PubMed ID: 20812717 [TBL] [Abstract][Full Text] [Related]
25. The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. Oates J; Barrett CM; Barnett JP; Byrne KG; Bolhuis A; Robinson C J Mol Biol; 2005 Feb; 346(1):295-305. PubMed ID: 15663945 [TBL] [Abstract][Full Text] [Related]
26. YidC-dependent translocation of green fluorescence protein fused to the FliP cleavable signal peptide. Pradel N; Decorps A; Ye C; Santini CL; Wu LF Biochimie; 2005 Feb; 87(2):191-6. PubMed ID: 15760712 [TBL] [Abstract][Full Text] [Related]
27. Twin-arginine-specific protein export in Escherichia coli. Müller M Res Microbiol; 2005 Mar; 156(2):131-6. PubMed ID: 15748976 [TBL] [Abstract][Full Text] [Related]
28. [Assessment of the Escherichia coli Tat protein translocation system with fluorescent proteins]. Zhang M; Pan RR; Yu ZL; Wu LF Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Aug; 35(8):702-6. PubMed ID: 12897964 [TBL] [Abstract][Full Text] [Related]
29. Twin-arginine-dependent translocation of SufI in the absence of cytosolic helper proteins. Holzapfel E; Moser M; Schiltz E; Ueda T; Betton JM; Müller M Biochemistry; 2009 Jun; 48(23):5096-105. PubMed ID: 19432418 [TBL] [Abstract][Full Text] [Related]
30. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. Cristóbal S; de Gier JW; Nielsen H; von Heijne G EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811 [TBL] [Abstract][Full Text] [Related]
31. E. coli selection of human genes encoding secreted and membrane proteins based on cDNA fusions to a leaderless beta-lactamase reporter. Tan R; Jiang X; Jackson A; Jin P; Yang J; Lee E; Duggan B; Stuve LL; Fu GK Genome Res; 2003 Aug; 13(8):1938-43. PubMed ID: 12869575 [TBL] [Abstract][Full Text] [Related]
32. Interaction network containing conserved and essential protein complexes in Escherichia coli. Butland G; Peregrín-Alvarez JM; Li J; Yang W; Yang X; Canadien V; Starostine A; Richards D; Beattie B; Krogan N; Davey M; Parkinson J; Greenblatt J; Emili A Nature; 2005 Feb; 433(7025):531-7. PubMed ID: 15690043 [TBL] [Abstract][Full Text] [Related]
33. Efficient export of prefolded, disulfide-bonded recombinant proteins to the periplasm by the Tat pathway in Escherichia coli CyDisCo strains. Matos CF; Robinson C; Alanen HI; Prus P; Uchida Y; Ruddock LW; Freedman RB; Keshavarz-Moore E Biotechnol Prog; 2014; 30(2):281-90. PubMed ID: 24376243 [TBL] [Abstract][Full Text] [Related]
34. Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Fisher AC; Kim W; DeLisa MP Protein Sci; 2006 Mar; 15(3):449-58. PubMed ID: 16452624 [TBL] [Abstract][Full Text] [Related]
35. Engineering a Supersecreting Strain of Taw MN; Li M; Kim D; Rocco MA; Waraho-Zhmayev D; DeLisa MP ACS Synth Biol; 2021 Nov; 10(11):2947-2958. PubMed ID: 34757717 [No Abstract] [Full Text] [Related]
36. Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins. Karlsson AJ; Lim HK; Xu H; Rocco MA; Bratkowski MA; Ke A; DeLisa MP J Mol Biol; 2012 Feb; 416(1):94-107. PubMed ID: 22197376 [TBL] [Abstract][Full Text] [Related]
37. Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection. Waraho-Zhmayev D; Meksiriporn B; Portnoff AD; DeLisa MP Protein Eng Des Sel; 2014 Oct; 27(10):351-8. PubMed ID: 25225416 [TBL] [Abstract][Full Text] [Related]
38. Beta-lactamase as a probe of membrane protein assembly and protein export. Broome-Smith JK; Tadayyon M; Zhang Y Mol Microbiol; 1990 Oct; 4(10):1637-44. PubMed ID: 2077355 [TBL] [Abstract][Full Text] [Related]
39. [Cloning and optimizing expression of a periplasmic solute-binding gene gsiB from Escherichia coli]. Wang ZS; Xiang QJ; Wang HY; Zhang YZ Yi Chuan; 2010 May; 32(5):505-11. PubMed ID: 20466641 [TBL] [Abstract][Full Text] [Related]
40. A simple method for maximizing the yields of membrane and exported proteins expressed in Escherichia coli. Broome-Smith JK; Bowler LD; Spratt BG Mol Microbiol; 1989 Dec; 3(12):1813-7. PubMed ID: 2695749 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]