BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22083775)

  • 1. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical model describing the transfer characteristics of a membrane hydrophone and validation.
    Gélat PN; Preston RC; Hurrell A
    Ultrasonics; 2005 Mar; 43(5):331-41. PubMed ID: 15737383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of nonlinear medium parameter B/A using model assisted variable-length measurement approach.
    Kujawska T; Nowicki A; Lewin PA
    Ultrasonics; 2011 Dec; 51(8):997-1005. PubMed ID: 21722932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields.
    Huttunen T; Kaipio JP; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration.
    Galbraith W; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1549-58. PubMed ID: 18250002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency response of PVDF needle-type hydrophones.
    Fay B; Ludwig G; Lankjaer C; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):361-6. PubMed ID: 8085292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):247-54. PubMed ID: 12782255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model.
    Vanhille C; Campos-Pozuelo C
    Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear propagation model for ultrasound hydrophones calibration in the frequency range up to 100 MHz.
    Radulescu EG; Wójcik J; Lewin PA; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):239-45. PubMed ID: 12782254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harmonic ultrasound fields through layered liquid media.
    Li Y; Chen Q; Zagzebski J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):146-52. PubMed ID: 15055804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.