These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22083775)

  • 21. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz.
    Esward TJ; Robinson SP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):737-44. PubMed ID: 18238474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wide-band piezoelectric polymer acoustic sources.
    Lewin PA; Schafer ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):175-85. PubMed ID: 18290144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PSpice simulation of an electro-acoustic communications channel.
    Wild G; Hinckley S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):981-5. PubMed ID: 20378461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of two methods for phase response calibration of hydrophones in the frequency range 10-400 kHz.
    Hayman G; Wang Y; Robinson S
    J Acoust Soc Am; 2013 Feb; 133(2):750-9. PubMed ID: 23363094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):318-339. PubMed ID: 30530326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity: complete tests at frequencies from 1 to 7 MHz.
    Oliveira EG; Costa-Felix RP; Machado JC
    Ultrasonics; 2015 Apr; 58():87-95. PubMed ID: 25578371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model.
    Wear KA; Liu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):340-347. PubMed ID: 30530327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA
    J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A micro-machined piezoelectric flexural-mode hydrophone with air backing: benefit of air backing for enhancing sensitivity.
    Lee H; Choi S; Moon W
    J Acoust Soc Am; 2010 Sep; 128(3):1033-44. PubMed ID: 20815440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of nonlinear fields on miniature hydrophone calibration using the planar scanning technique.
    Corbett SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):162-7. PubMed ID: 18290142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation and measurement of nonlinear behavior in a high-power test cell.
    Harvey G; Gachagan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):808-19. PubMed ID: 21507758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear standing waves in a resonator with feedback control.
    Huang XY; Nguyen NT; Jiao ZJ
    J Acoust Soc Am; 2007 Jul; 122(1):38-41. PubMed ID: 17614462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates.
    Müller MF; Kim JY; Qu J; Jacobs LJ
    J Acoust Soc Am; 2010 Apr; 127(4):2141-52. PubMed ID: 20369995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology.
    Matte GM; Van Neer PL; Danilouchkine MG; Huijssen J; Verweij MD; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):533-46. PubMed ID: 21429845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity.
    Wear KA; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):137-148. PubMed ID: 29389648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acousto-optic interaction in a non-homogeneous acoustic field excited by a wedge-shaped transducer.
    Balakshy VI; Linde BB; Vostrikova AN
    Ultrasonics; 2008 Sep; 48(5):351-6. PubMed ID: 18291434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.