These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 22083868)
1. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review. Abelló S; Montané D ChemSusChem; 2011 Nov; 4(11):1538-56. PubMed ID: 22083868 [TBL] [Abstract][Full Text] [Related]
2. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. Zhang Q; Cheng K; Kang J; Deng W; Wang Y ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240 [TBL] [Abstract][Full Text] [Related]
3. Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst. Yan Q; Yu F; Liu J; Street J; Gao J; Cai Z; Zhang J Bioresour Technol; 2013 Jan; 127():281-90. PubMed ID: 23131653 [TBL] [Abstract][Full Text] [Related]
4. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
5. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436 [TBL] [Abstract][Full Text] [Related]
6. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. de Smit E; Weckhuysen BM Chem Soc Rev; 2008 Dec; 37(12):2758-81. PubMed ID: 19020686 [TBL] [Abstract][Full Text] [Related]
7. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
8. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer-Tropsch catalysts from surface science to industrial application. Oosterbeek H Phys Chem Chem Phys; 2007 Jul; 9(27):3570-6. PubMed ID: 17612722 [TBL] [Abstract][Full Text] [Related]
9. Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts. Sartipi S; Alberts M; Meijerink MJ; Keller TC; Pérez-Ramírez J; Gascon J; Kapteijn F ChemSusChem; 2013 Sep; 6(9):1646-50. PubMed ID: 23765635 [TBL] [Abstract][Full Text] [Related]
10. Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies. Chen J; Liu ZP J Am Chem Soc; 2008 Jun; 130(25):7929-37. PubMed ID: 18507384 [TBL] [Abstract][Full Text] [Related]
11. Long-term operation of biomass-to-liquid systems coupled to gasification and Fischer-Tropsch processes for biofuel production. Kim K; Kim Y; Yang C; Moon J; Kim B; Lee J; Lee U; Lee S; Kim J; Eom W; Lee S; Kang M; Lee Y Bioresour Technol; 2013 Jan; 127():391-9. PubMed ID: 23138062 [TBL] [Abstract][Full Text] [Related]
12. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. Costentin C; Robert M; Savéant JM Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053 [TBL] [Abstract][Full Text] [Related]
13. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles. Cheng K; Zhang L; Kang J; Peng X; Zhang Q; Wang Y Chemistry; 2015 Jan; 21(5):1928-37. PubMed ID: 25424473 [TBL] [Abstract][Full Text] [Related]
14. Selective homogeneous and heterogeneous catalytic conversion of methanol/dimethyl ether to triptane. Hazari N; Iglesia E; Labinger JA; Simonetti DA Acc Chem Res; 2012 Apr; 45(4):653-62. PubMed ID: 22277056 [TBL] [Abstract][Full Text] [Related]
15. Ultrasound and microwave assisted synthesis of high loading Fe-supported Fischer-Tropsch catalysts. Pirola C; Bianchi CL; Di Michele A; Diodati P; Boffito D; Ragaini V Ultrason Sonochem; 2010 Mar; 17(3):610-6. PubMed ID: 20005145 [TBL] [Abstract][Full Text] [Related]
16. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785 [TBL] [Abstract][Full Text] [Related]
17. Issues and challenges of Fischer-Tropsch synthesis catalysts. Amin M; Usman M; Kella T; Khan WU; Khan IA; Hoon Lee K Front Chem; 2024; 12():1462503. PubMed ID: 39324063 [TBL] [Abstract][Full Text] [Related]
18. Sustainable production of green feed from carbon dioxide and hydrogen. Landau MV; Vidruk R; Herskowitz M ChemSusChem; 2014 Mar; 7(3):785-94. PubMed ID: 24678062 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of cyclic carbonates: catalysis by an iron-based composite and the role of hydrogen bonding at the solid/liquid interface. Qu J; Cao CY; Dou ZF; Liu H; Yu Y; Li P; Song WG ChemSusChem; 2012 Apr; 5(4):652-5. PubMed ID: 22441879 [TBL] [Abstract][Full Text] [Related]
20. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Olsbye U; Svelle S; Bjørgen M; Beato P; Janssens TV; Joensen F; Bordiga S; Lillerud KP Angew Chem Int Ed Engl; 2012 Jun; 51(24):5810-31. PubMed ID: 22511469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]