These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22084041)

  • 1. DiBa: a data-driven Bayesian algorithm for sleep spindle detection.
    Babadi B; McKinney SM; Tarokh V; Ellenbogen JM
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):483-93. PubMed ID: 22084041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of complexity sequence in sleep staging based on sleep EEG data].
    Long F; Zhang D; Fan L; Wu X; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):60-3. PubMed ID: 12744164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved spindle detection through intuitive pre-processing of electroencephalogram.
    Jaleel A; Ahmed B; Tafreshi R; Boivin DB; Streletz L; Haddad N
    J Neurosci Methods; 2014 Aug; 233():1-12. PubMed ID: 24887741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichannel matching pursuit and EEG inverse solutions.
    Durka PJ; Matysiak A; Montes EM; Sosa PV; Blinowska KJ
    J Neurosci Methods; 2005 Oct; 148(1):49-59. PubMed ID: 15908012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reliable probabilistic sleep stager based on a single EEG signal.
    Flexer A; Gruber G; Dorffner G
    Artif Intell Med; 2005 Mar; 33(3):199-207. PubMed ID: 15811785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing.
    Kabir MM; Tafreshi R; Boivin DB; Haddad N
    Med Biol Eng Comput; 2015 Jul; 53(7):635-44. PubMed ID: 25779627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of cortical slow waves in the sleep EEG using a modified matching pursuit method with a restricted dictionary.
    Picot A; Whitmore H; Chapotot F
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2808-17. PubMed ID: 22868527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of neonate EEG sleep stages.
    Piryatinska A; Terdik G; Woyczynski WA; Loparo KA; Scher MS; Zlotnik A
    Comput Methods Programs Biomed; 2009 Jul; 95(1):31-46. PubMed ID: 19233504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating an automated sleep spindle detection algorithm using an individualized approach.
    Ray LB; Fogel SM; Smith CT; Peters KR
    J Sleep Res; 2010 Jun; 19(2):374-8. PubMed ID: 20149067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian nonstationary autoregressive models for biomedical signal analysis.
    Cassidy MJ; Penny WD
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1142-52. PubMed ID: 12374338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep spindle detection through amplitude-frequency normal modelling.
    Nonclercq A; Urbain C; Verheulpen D; Decaestecker C; Van Bogaert P; Peigneux P
    J Neurosci Methods; 2013 Apr; 214(2):192-203. PubMed ID: 23370313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG analysis using non-uniform oversampled filter banks.
    Berthomier C; Prado J; Benoit O
    Biomed Sci Instrum; 1997; 34():119-24. PubMed ID: 9603024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling.
    Yoon JW; Roberts SJ; Dyson M; Gan JQ
    Neural Netw; 2009 Nov; 22(9):1286-94. PubMed ID: 19608382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian inference for an adaptive Ordered Probit model: an application to Brain Computer Interfacing.
    Yoon JW; Roberts SJ; Dyson M; Gan JQ
    Neural Netw; 2011 Sep; 24(7):726-34. PubMed ID: 21493037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. xDAWN algorithm to enhance evoked potentials: application to brain-computer interface.
    Rivet B; Souloumiac A; Attina V; Gibert G
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2035-43. PubMed ID: 19174332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm.
    Yoon HJ; Chung SY
    Comput Biol Med; 2013 Dec; 43(12):2230-7. PubMed ID: 24290940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveil sleep spindles with concentration of frequency and time (ConceFT).
    Shimizu R; Wu HT
    Physiol Meas; 2024 Aug; 45(8):. PubMed ID: 39042095
    [No Abstract]   [Full Text] [Related]  

  • 20. Development and comparison of four sleep spindle detection methods.
    Huupponen E; Gómez-Herrero G; Saastamoinen A; Värri A; Hasan J; Himanen SL
    Artif Intell Med; 2007 Jul; 40(3):157-70. PubMed ID: 17555950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.