These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22084041)

  • 21. Explicit parameterization of sleep EEG transients.
    Malinowska U; Durka PJ; Zygierewicz J; Szelenberger W; Wakarow A
    Comput Biol Med; 2007 Apr; 37(4):534-41. PubMed ID: 16996048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A study of sleep stage classification based on permutation entropy for electroencephalogram].
    Li G; Fan Y; Pang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):869-72. PubMed ID: 19813629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles.
    LaRocco J; Franaszczuk PJ; Kerick S; Robbins K
    J Neural Eng; 2018 Dec; 15(6):066015. PubMed ID: 30132445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data.
    Zumer JM; Attias HT; Sekihara K; Nagarajan SS
    Neuroimage; 2007 Aug; 37(1):102-15. PubMed ID: 17574444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated sleep scoring in rats and mice using the naive Bayes classifier.
    Rytkönen KM; Zitting J; Porkka-Heiskanen T
    J Neurosci Methods; 2011 Oct; 202(1):60-4. PubMed ID: 21884727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computer analysis of human depth EEG in different sleep stages.
    Yu Q; Rayport M; Farison JB; Dennis MJ; Choi YS
    Biomed Sci Instrum; 1997; 33():184-90. PubMed ID: 9731357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study.
    Ventouras EM; Monoyiou EA; Ktonas PY; Paparrigopoulos T; Dikeos DG; Uzunoglu NK; Soldatos CR
    Comput Methods Programs Biomed; 2005 Jun; 78(3):191-207. PubMed ID: 15899305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multimodal time-variant signal analysis of neonatal EEG burst patterns.
    Witte H; Putsche P; Eiselt M; Hoffmann K; Arnold M; Jäger H; Leistritz L
    Stud Health Technol Inform; 1998; 52 Pt 2():1250-4. PubMed ID: 10384660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topographic mapping of electroencephalography coherence in hypnagogic state.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1998 Apr; 52(2):147-8. PubMed ID: 9628119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sleep spindle detection algorithm that emulates human expert spindle scoring.
    Lacourse K; Delfrate J; Beaudry J; Peppard P; Warby SC
    J Neurosci Methods; 2019 Mar; 316():3-11. PubMed ID: 30107208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drowsiness Detection by Bayesian-Copula Discriminant Classifier Based on EEG Signals During Daytime Short Nap.
    Qian D; Wang B; Qing X; Zhang T; Zhang Y; Wang X; Nakamura M
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):743-754. PubMed ID: 27254855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Constrained ICA and its application to removing artifacts in EEG].
    Gao A; Luo Y; Chen K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):497-501. PubMed ID: 18693418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic fuzzy classifier for sleep stage identification.
    Jo HG; Park JY; Lee CK; An SK; Yoo SK
    Comput Biol Med; 2010 Jul; 40(7):629-34. PubMed ID: 20541183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers?
    Ktonas PY; Golemati S; Xanthopoulos P; Sakkalis V; Ortigueira MD; Tsekou H; Zervakis M; Paparrigopoulos T; Bonakis A; Economou NT; Theodoropoulos P; Papageorgiou SG; Vassilopoulos D; Soldatos CR
    J Neurosci Methods; 2009 Dec; 185(1):133-42. PubMed ID: 19747507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional changes of the brainstem triggering vertex sharp wave with spindle.
    Sakai T; Kohsaka S; Kohsaka M
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):167-9. PubMed ID: 10459679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Characteristics of interregional interactions of cortical fields at different stages of normal and hypnotic sleep (according to EEG data)].
    Shepoval'nikov AN; Tsitseroshin MN; Rozhkov VP; Gal'perina EI; Zaĭtseva LG; Shepoval'nikov RA
    Fiziol Cheloveka; 2005; 31(2):34-48. PubMed ID: 15889819
    [No Abstract]   [Full Text] [Related]  

  • 38. Sleep-spindle identification on EEG signals from polysomnographie recordings using correntropy.
    Ulloa S; Estevez PA; Huijse P; Held CM; Perez CA; Chamorro R; Garrido M; Algarin C; Peirano P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3736-3739. PubMed ID: 28269102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation.
    Sykacek P; Roberts SJ; Stokes M
    IEEE Trans Biomed Eng; 2004 May; 51(5):719-27. PubMed ID: 15132497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data mining techniques for detection of sleep arousals.
    Shmiel O; Shmiel T; Dagan Y; Teicher M
    J Neurosci Methods; 2009 May; 179(2):331-7. PubMed ID: 19428545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.